1、K-Means算法java实现:
public class BasicKMeans {
public static void main(String[] args) {
// TODO Auto-generated method stub
double[] p = { 1, 2, 3, 5, 6, 7, 9, 10, 11, 100, 150, 200, 1000 };
int k = 5;
double[][] g;
g = cluster(p, k);
for (int i = 0; i < g.length; i++) {
for (int j = 0; j < g[i].length; j++) {
System.out.print(g[i][j]);
System.out.print("\t");
}
System.out.println();
}
}
public static double[][] cluster(double[] p, int k) {
// 存放聚类旧的聚类中心
double[] c = new double[k];
// 存放新计算的聚类中心
double[] nc = new double[k];
// 存放放回结果
double[][] g;
// 初始化聚类中心
// 经典方法是随机选取 k 个
// 本例中采用前 k 个作为聚类中心
// 聚类中心的选取不影响最终结果
for (int i = 0; i < k; i++)
c[i] = p[i];
// 循环聚类,更新聚类中心
// 到聚类中心不变为止
while (true) {
// 根据聚类中心将元素分类
g = group(p, c);
// 计算分类后的聚类中心
for (int i = 0; i < g.length; i++) {
nc[i] = center(g[i]);
}
// 如果聚类中心不同
if (!equal(nc, c)) {
// 为下一次聚类准备
c = nc;
nc = new double[k];
} else // 聚类结束
break;
}
// 返回聚类结果
return g;
}
public static double center(double[] p) {
return sum(p) / p.length;
}
public static double[][] group(double[] p, double[] c) {
// 中间变量,用来分组标记
int[] gi = new int[p.length];
// 考察每一个元素 pi 同聚类中心 cj 的距离
// pi 与 cj 的距离最小则归为 j 类
for (int i = 0; i < p.length; i++) {
// 存放距离
double[] d = new double[c.length];
// 计算到每个聚类中心的距离
for (int j = 0; j < c.length; j++) {
d[j] = distance(p[i], c[j]);
}
// 找出最小距离
int ci = min(d);
// 标记属于哪一组
gi[i] = ci;
}
// 存放分组结果
double[][] g = new double[c.length][];
// 遍历每个聚类中心,分组
for (int i = 0; i < c.length; i++) {
// 中间变量,记录聚类后每一组的大小
int s = 0;
// 计算每一组的长度
for (int j = 0; j < gi.length; j++)
if (gi[j] == i)
s++;
// 存储每一组的成员
g[i] = new double[s];
s = 0;
// 根据分组标记将各元素归位
for (int j = 0; j < gi.length; j++)
if (gi[j] == i) {
g[i][s] = p[j];
s++;
}
}
// 返回分组结果
return g;
} public static double distance(double x, double y) {
return Math.abs(x - y);
} public static double sum(double[] p) {
double sum = 0.0;
for (int i = 0; i < p.length; i++)
sum += p[i];
return sum;
} public static int min(double[] p) {
int i = 0;
double m = p[0];
for (int j = 1; j < p.length; j++) {
if (p[j] < m) {
i = j;
m = p[j];
}
}
return i;
} public static boolean equal(double[] a, double[] b) {
if (a.length != b.length)
return false;
else {
for (int i = 0; i < a.length; i++) {
if (a[i] != b[i])
return false;
}
}
return true;
}
}
2、层次聚类算法的java实现:
(1)DataPoint.java
public class DataPoint {
String dataPointName; // 样本点名
Cluster cluster; // 样本点所属类簇
public DataPoint(double[] dimensioin,String dataPointName){
this.dataPointName=dataPointName;
this.dimensioin=dimensioin;
public double[] getDimensioin() {
return dimensioin;
public void setDimensioin(double[] dimensioin) {
this.dimensioin = dimensioin;
public Cluster getCluster() {
return cluster;
public void setCluster(Cluster cluster) {
this.cluster = cluster;
public String getDataPointName() {
return dataPointName;
public void setDataPointName(String dataPointName) {
this.dataPointName = dataPointName;
}
}
(2)Cluster.java
import java.util.ArrayList;
import java.util.List; public class Cluster {
private List<DataPoint> dataPoints = new ArrayList<DataPoint>(); // 类簇中的样本点
public List<DataPoint> getDataPoints() {
return dataPoints;
public void setDataPoints(List<DataPoint> dataPoints) {
this.dataPoints = dataPoints;
public String getClusterName() {
return clusterName;
public void setClusterName(String clusterName) {
this.clusterName = clusterName;
}
(3)ClusterAnalysis.java
//层次聚类分析,程序入口;
import java.util.ArrayList;
import java.util.List; public class ClusterAnalysis {
public List<Cluster> startAnalysis(List<DataPoint> dataPoints,int ClusterNum){
List<Cluster> finalClusters=new ArrayList<Cluster>();
List<Cluster> originalClusters=initialCluster(dataPoints);
finalClusters=originalClusters;
while(finalClusters.size()>ClusterNum){
double min=Double.MAX_VALUE;
int mergeIndexA=0;
int mergeIndexB=0;
for(int i=0;i<finalClusters.size();i++){
for(int j=0;j<finalClusters.size();j++){
if(i!=j){
Cluster clusterA=finalClusters.get(i);
List<DataPoint> dataPointsA=clusterA.getDataPoints();
for(int m=0;m<dataPointsA.size();m++){
for(int n=0;n<dataPointsB.size();n++){
double tempDis=getDistance(dataPointsA.get(m),dataPointsB.get(n));
if(tempDis<min){
min=tempDis;
mergeIndexA=i;
mergeIndexB=j;
}
}
}
}
} //end for j
}// end for i
//合并cluster[mergeIndexA]和cluster[mergeIndexB]
finalClusters=mergeCluster(finalClusters,mergeIndexA,mergeIndexB);
return finalClusters;
}
private List<Cluster> mergeCluster(List<Cluster> clusters,int mergeIndexA,int mergeIndexB){
if (mergeIndexA != mergeIndexB) {
// 将cluster[mergeIndexB]中的DataPoint加入到 cluster[mergeIndexA]
Cluster clusterA = clusters.get(mergeIndexA);
List<DataPoint> dpA = clusterA.getDataPoints();
for (DataPoint dp : dpB) {
DataPoint tempDp = new DataPoint();
tempDp.setDataPointName(dp.getDataPointName());
tempDp.setDimensioin(dp.getDimensioin());
tempDp.setCluster(clusterA);
dpA.add(tempDp);
// List<Cluster> clusters中移除cluster[mergeIndexB]
clusters.remove(mergeIndexB);
return clusters;
// 初始化类簇
private List<Cluster> initialCluster(List<DataPoint> dataPoints){
List<Cluster> originalClusters=new ArrayList<Cluster>();
for(int i=0;i<dataPoints.size();i++){
DataPoint tempDataPoint=dataPoints.get(i);
List<DataPoint> tempDataPoints=new ArrayList<DataPoint>();
Cluster tempCluster=new Cluster();
tempCluster.setClusterName("Cluster "+String.valueOf(i));
tempDataPoint.setCluster(tempCluster);
originalClusters.add(tempCluster);
return originalClusters;
//计算两个样本点之间的欧几里得距离
private double getDistance(DataPoint dpA,DataPoint dpB){
double distance=0;
double[] dimA = dpA.getDimensioin();
if (dimA.length == dimB.length) {
for (int i = 0; i < dimA.length; i++) {
double temp=Math.pow((dimA[i]-dimB[i]),2);
distance=distance+temp;
}
distance=Math.pow(distance, 0.5);
return distance;
public static void main(String[] args){
ArrayList<DataPoint> dpoints = new ArrayList<DataPoint>();
double[] a={2,3};
double[] b={2,4};
double[] c={1,4};
double[] d={1,3};
double[] e={2,2};
double[] g={8,7};
double[] h={8,6};
double[] i={7,7};
double[] j={7,6};
//
double[] m={8,20};
double[] n={8,19};
double[] o={7,18};
double[] p={7,17};
dpoints.add(new DataPoint(a,"a"));
dpoints.add(new DataPoint(b,"b"));
dpoints.add(new DataPoint(c,"c"));
dpoints.add(new DataPoint(d,"d"));
dpoints.add(new DataPoint(e,"e"));
dpoints.add(new DataPoint(g,"g"));
dpoints.add(new DataPoint(h,"h"));
dpoints.add(new DataPoint(i,"i"));
dpoints.add(new DataPoint(j,"j"));
//
dpoints.add(new DataPoint(m,"m"));
dpoints.add(new DataPoint(n,"n"));
dpoints.add(new DataPoint(o,"o"));
dpoints.add(new DataPoint(p,"p"));
ClusterAnalysis ca=new ClusterAnalysis();
for(Cluster cl:clusters){
System.out.println("------"+cl.getClusterName()+"------");
List<DataPoint> tempDps=cl.getDataPoints();
for(DataPoint tempdp:tempDps){
System.out.println(tempdp.getDataPointName());
}
}
}