关键词:蓝牙blueZ  UART  HCI_UART H4  HCI  L2CAP RFCOMM 
版本:基于android4.2之前版本 bluez
内核:linux/linux3.08
系统:android/android4.1.3.4
作者:xubin341719(欢迎转载,请注明作者,请尊重版权谢谢)
欢迎指正错误,共同学习、共同进步!!
一、Android Bluetooth Architecture蓝牙代码架构部分(google 官方蓝牙框架)

Android 蓝牙底层学习 android 蓝牙架构图_移动开发

Android的蓝牙系统,自下而上包括以下一些内容如上图所示:

1、串口驱动Linux的内核的蓝牙驱动程、Linux的内核的蓝牙协议的层

2、BlueZ的适配器BlueZ的(蓝牙在用户空间的函式库)

Android 蓝牙底层学习 android 蓝牙架构图_操作系统_02

bluez代码结构Bluetooth协议栈BlueZ分为两部分:内核代码和用户态程序及工具集。
(1)、内核代码:由BlueZ核心协议和驱动程序组成
Bluetooth协议实现在内核源代码 kernel/net/bluetooth中。包括hci,l2cap,hid,rfcomm,sco,SDP,BNEP等协议的实现。
(2)、驱动程序:kernel/driver/bluetooth中,包含Linuxkernel对各种接口的
Bluetooth device的驱动,如:USB接口,串口等。
(3)、用户态程序及工具集:包括应用程序接口和BlueZ工具集。BlueZ提供函数库以及应用程序接口,便于程序员开发bluetooth应用程序。BlueZ utils是主要工具集,实现对bluetooth设备的初始化和控制。

3、蓝牙相关的应用程序接口Android.buletooth包中的各个Class(蓝牙在框架层的内容-----java)

类名

作用

BluetoothAdapter

本地蓝牙设备的适配类,所有的蓝牙操作都要通过该类完成

BluetoothClass

用于描述远端设备的类型,特点等信息

BluetoothDevice

蓝牙设备类,代表了蓝牙通讯过程中的远端设备

BluetoothServerSocket

蓝牙设备服务端,类似ServerSocket

BluetoothSocket

蓝牙设备客户端,类似Socket

BluetoothClass.Device

蓝牙关于设备信息

BluetoothClass.Device.Major

蓝牙设备管理

BluetoothClass.Service

蓝牙相关服务

同样下图也是一张比较经典的蓝牙代码架构图(google官方提供)

Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_03

LinuxKernel层:

bluez协议栈、uart驱动, h4协议, hci,l2cap, sco, rfcomm

Library层:

libbluedroid.so 等

Framework层:

实现了Headset /Handsfree 和 A2DP/AVRCP profile,但其实现方式不同Handset/Handfree是直接 在bluez的RFCOMM Socket上开发的,没有利用bluez的audio plugin,而A2DP/AVRCP是在bluez的audio plugin基础上开发的,大大降低了实现的难度。

二、蓝牙通过Hciattach启动串口流程:1、hciattach总体流程


Android 蓝牙底层学习 android 蓝牙架构图_移动开发_04

2、展讯hciattach代码实现流程:

Android 蓝牙底层学习 android 蓝牙架构图_ci_05

三、具体代码分析1、initrc中定义
idh.code\device\sprd\sp8830ec_nwcn\init.sc8830.rc


1. service hciattach /system/bin/hciattach -n /dev/sttybt0 sprd_shark  
2.     socket bluetooth stream 660 bluetooth bluetooth  
3.     user bluetooth  
4.     group wifi bluetooth net_bt_admin net_bt inet net_raw net_admin system  
5.     disabled  
6. oneshot



adb 下/dev/ttybt0(不同平台有所不同)

Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_06

PS 进程中:hicattch

Android 蓝牙底层学习 android 蓝牙架构图_ci_07

2、/system/bin/hciattach 执行的Main函数idh.code\external\bluetooth\bluez\tools\hciattach.c
service hciattach /system/bin/hciattach -n /dev/sttybt0 sprd_shark
传进两个参数,/dev/sttybt0 和 sprd_shark

    1. nt main(int argc, char *argv[])  
    2. {  
    3. ………………  
    4.     for (n = 0; optind <</span> argc; n++, optind++) {  
    5.         char *opt;  
    6.   
    7.         opt = argv[optind];  
    8.   
    9.         switch(n) {  
    10.         case 0://(1)、解析驱动的位置;  
    11.             dev[0] = 0;  
    12.             if (!strchr(opt, '/'))  
    13.                 strcpy(dev, "/dev/");  
    14.             strcat(dev, opt);  
    15.             break;  
    16.   
    17.         case 1://(2)、解析串口的配置相关参数;  
    18.             if (strchr(argv[optind], ',')) {  
    19.                 int m_id, p_id;  
    20.                 sscanf(argv[optind], "%x,%x", &m_id, &p_id);  
    21.                 u = get_by_id(m_id, p_id);  
    22.             } else {  
    23.                 u = get_by_type(opt);  
    24.             }  
    25.   
    26.             if (!u) {  
    27.                 fprintf(stderr, "Unknown device type or id\n");  
    28.                 exit(1);  
    29.             }  
    30.   
    31.             break;  
    32.   
    33.         case 2://(3)、通过对前面参数的解析,把uart[i]中的数值初始化;  
    34.             u->speed = atoi(argv[optind]);  
    35.             break;  
    36.   
    37.         case 3:  
    38.             if (!strcmp("flow", argv[optind]))  
    39.                 u->flags |=  FLOW_CTL;  
    40.             else  
    41.                 u->flags &= ~FLOW_CTL;  
    42.             break;  
    43.   
    44.         case 4:  
    45.             if (!strcmp("sleep", argv[optind]))  
    46.                 u->pm = ENABLE_PM;  
    47.             else  
    48.                 u->pm = DISABLE_PM;  
    49.             break;  
    50.   
    51.         case 5:  
    52.             u->bdaddr = argv[optind];  
    53.             break;  
    54.         }  
    55.     }  
    56.   
    57. ………………  
    58.     if (init_speed)//初始化串口速率;  
    59.         u->init_speed = init_speed;  
    60. ………………  
    61.     n = init_uart(dev, u, send_break, raw);//(4)、初始化串口;  
    62. ………………  
    63.   
    64.     return 0;  
    65. }



    (1)、解析驱动的位置;



    1.             if (!strchr(opt, '/'))  
    2.                 strcpy(dev, "/dev/");  
    3. service hciattach /system/bin/hciattach -n /dev/sttybt0 sprd_shark  
    4. dev = /dev/ttyb0



    (2)、解析串口的配置相关参数;获取参数对应的结构体;



    1.     u = get_by_id(m_id, p_id);  
    2. static struct uart_t * get_by_id(int m_id, int p_id)  
    3. {  
    4.     int i;  
    5.     for (i = 0; uart[i].type; i++) {  
    6.         if (uart[i].m_id == m_id && uart[i].p_id == p_id)  
    7.             return &uart[i];  
    8.     }  
    9.     return NULL;  
    10. }



    这个函数比较简单,通过循环对比,如传进了的参数sprd_shark和uart结构体中的对比,找到对应的数组。如果是其他蓝牙芯片,如博通、RDA、BEKN等着到其相对应的初始化配置函数。


    1. struct uart_t uart[] = {  
    2.     { "any",        0x0000, 0x0000, HCI_UART_H4,   115200, 115200,  
    3.                 FLOW_CTL, DISABLE_PM, NULL, NULL     },  
    4.     { "sprd_shark",        0x0000, 0x0000, HCI_UART_H4,   115200, 115200,  
    5.                 FLOW_CTL, DISABLE_PM, NULL, init_sprd_config     },  
    6.   
    7.     { "ericsson",   0x0000, 0x0000, HCI_UART_H4,   57600,  115200,  
    8.                 FLOW_CTL, DISABLE_PM, NULL, ericsson },  
    9.   
    10. ………………  
    11.     { "bk3211",    0x0000, 0x0000, HCI_UART_BCSP,   115200, 921600, 0, DISABLE_PM,   NULL, beken_init, NULL},  
    12.     { NULL, 0 }  
    13. };


    注意:init_sprd_config这个函数在uart_init中用到,这个函数其实对我们具体芯片的初始化配置。

    注释:HCI_UART_H4和HCI_UART_BCSP的区别如下图。

    Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_08

    (3)、通过对前面参数的解析,把uart[i]中的数值初始化;



    1. u->speed = atoi(argv[optind]);  
    2. break;



    (4)、初始化串口;

    1. n = init_uart(dev, u, send_break, raw);  
    2. idh.code\external\bluetooth\bluez\tools\hciattach.c  
    3.   
    4. int init_uart(char *dev, struct uart_t *u, int send_break)  
    5. {  
    6.  struct termios ti;  
    7.  int  fd, i;  
    8.  fd = open(dev, O_RDWR | O_NOCTTY);//打开串口设备,其中标志  
    9. //O_RDWR,可以对此设备进行读写操作;  
    10. //O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。  
    11. //O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。  
    12. //但是不要以控制 tty 的模式,因为我们并不希望在发送 Ctrl-C  
    13.  后结束此进程  
    14.  if (fd <</span> 0) {  
    15.   perror(“Can’t open serial port”);  
    16.   return -1;  
    17.  }  
    18.  //drop fd’s data;  
    19.  tcflush(fd, TCIOFLUSH);//清空数据线  
    20.  if (tcgetattr(fd, &ti) <</span> 0) {  
    21.   perror(“Can’t get port settings”);  
    22.   return -1;  
    23.  }  
    24.  cfmakeraw(&ti);  
    25. cfmakeraw sets the terminal attributes as follows://此函数设置串口终端的以下这些属性,  
    26. termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP  
    27. |INLCR|IGNCR|ICRNL|IXON);  
    28. termios_p->c_oflag &= ~OPOST;  
    29. termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);  
    30. termios_p->c_cflag &= ~(CSIZE|PARENB) ;  
    31. termios_p->c_cflag |=CS8;  
    32.  ti.c_cflag |= CLOCAL;//本地连接,无调制解调器控制  
    33.  if (u->flags & FLOW_CTL)  
    34.   ti.c_cflag |= CRTSCTS;//输出硬件流控  
    35.  else  
    36.   ti.c_cflag &= ~CRTSCTS;  
    37.  if (tcsetattr(fd, TCSANOW, &ti) <</span> 0) {//启动新的串口设置  
    38.   perror(“Can’t set port settings”);  
    39.   return -1;  
    40.  }  
    41.    
    42.  if (set_speed(fd, &ti, u->init_speed) <</span> 0) {//设置串口的传输速率bps, 也可以使  
    43. //用 cfsetispeed 和 cfsetospeed 来设置  
    44.   perror(“Can’t set initial baud rate”);  
    45.   return -1;  
    46.  }  
    47.  tcflush(fd, TCIOFLUSH);//清空数据线  
    48.  if (send_break)  
    49.   tcsendbreak(fd, 0);  
    50. //int tcsendbreak ( int fd, int duration );Sends a break for  
    51. //the given time.在串口线上发送0值,至少维持0.25秒。  
    52. //If duration is 0, it transmits zero-valued bits for at least 0.25 seconds, and  
    53. //not more than 0.5seconds.  
    54.  //where place register u’s init function;  
    55.  if (u->init && u->init(fd, u, &ti) <</span> 0)  
    56. //所有bluez支持的蓝牙串口设备类型构成了一个uart结构数组,通过  
    57. //查找对应的uart类型,这个uart的init成员显示了它的init调用方法;  
    58. struct uart_t uart[] = {  
    59. { "any", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,FLOW_CTL, DISABLE_PM, NULL, NULL     },  
    60. { "sprd_shark", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,FLOW_CTL, DISABLE_PM, NULL, init_sprd_config     },  
    61.   
    62. { "ericsson", 0x0000, 0x0000, HCI_UART_H4,   57600,  115200,FLOW_CTL, DISABLE_PM, NULL, ericsson },  
    63. ………………  
    64.     { "bk3211",    0x0000, 0x0000, HCI_UART_BCSP,   115200, 921600, 0, DISABLE_PM,   NULL, beken_init, NULL},  
    65.     { NULL, 0的init函数名为bcsp,定义在本文件中**;  
    66.   return -1;  
    67.  tcflush(fd, TCIOFLUSH);//清空数据线  
    68.    
    69.  if (set_speed(fd, &ti, u->speed) <</span> 0) {  
    70.   perror(“Can’t set baud rate”);  
    71.   return -1;  
    72.  }  
    73.    
    74.  i = N_HCI;  
    75.  if (ioctl(fd, TIOCSETD, &i) <</span> 0) {//  
    76. TIOCSETD int *ldisc//改变到 i 行规,即hci行规  
    77. Change to the new line discipline pointed to by ldisc. The available line disciplines are listed in   
    78.   
    79.   
    80. #define N_TTY  0  
    81. ……  
    82. #define N_HCI  15    
    83.   
    84.   perror(“Can’t set line discipline”);  
    85.   return -1;  
    86.  }  
    87.  if (ioctl(fd, HCIUARTSETPROTO, u->proto) <</span> 0) {  
    88. //设置hci设备的proto操作函数集为hci_uart操作集;  
    89.   perror(“Can’t set device”);  
    90.   return -1;  
    91.  }  
    92.  return fd;  
    93. }



    这里一个重要的部分是:u->init指向init_sprd_config
    4、uart具体到芯片的初始化init_sprd_config(这部分根据不同的芯片,对应进入其相应初始化部分)
    idh.code\external\bluetooth\bluez\tools\hciattach_sprd.c



    1. int sprd_config_init(int fd, char *bdaddr, struct termios *ti)  
    2. {  
    3.     int i,psk_fd,fd_btaddr,ret = 0,r,size=0,read_btmac=0;  
    4.     unsigned char resp[30];  
    5.     BT_PSKEY_CONFIG_T bt_para_tmp;  
    6.     char bt_mac[30] = {0};  
    7.     char bt_mac_tmp[20] = {0};  
    8.     uint8 bt_mac_bin[32]     = {0};  
    9.   
    10.     fprintf(stderr,"init_sprd_config in \n");  
    11. //(1)、这部分检查bt_mac,如果存在,从文件中读取,如果不存在,随机生成,并写入相应文件;  
    12.     if(access(BT_MAC_FILE, F_OK) == 0) {//这部分检查bt_mac  
    13.         LOGD("%s: %s exists",__FUNCTION__, BT_MAC_FILE);  
    14.         fd_btaddr = open(BT_MAC_FILE, O_RDWR);// #define BT_MAC_FILE        "/productinfo/btmac.txt"  
    15.         if(fd_btaddr>=0) {  
    16.             size = read(fd_btaddr, bt_mac, sizeof(bt_mac));//读取BT_MAC_FILE中的地址;  
    17.             LOGD("%s: read %s %s, size=%d",__FUNCTION__, BT_MAC_FILE, bt_mac, size);  
    18.             if(size == BT_RAND_MAC_LENGTH){  
    19.                         LOGD("bt mac already exists, no need to random it");  
    20.                         fprintf(stderr, "read btmac ok \n");  
    21.                         read_btmac=1;  
    22.             }  
    23. …………  
    24.     }else{//如果不存在,就随机生成一个bt_mac地址,写入/productinfo/btmac.txt  
    25.         fprintf(stderr, "btmac.txt not exsit!\n");  
    26.         read_btmac=0;  
    27.         mac_rand(bt_mac);  
    28.         LOGD("bt random mac=%s",bt_mac);  
    29.         printf("bt_mac=%s\n",bt_mac);  
    30.         write_btmac2file(bt_mac);  
    31.   
    32.         fd_btaddr = open(BT_MAC_FILE, O_RDWR);  
    33.         if(fd_btaddr>=0) {  
    34.             size = read(fd_btaddr, bt_mac, sizeof(bt_mac));  
    35.             LOGD("%s: read %s %s, size=%d",__FUNCTION__, BT_MAC_FILE, bt_mac, size);  
    36.             if(size == BT_RAND_MAC_LENGTH){  
    37.                         LOGD("bt mac already exists, no need to random it");  
    38.                         fprintf(stderr, "read btmac ok \n");  
    39.                         read_btmac=1;  
    40.             }  
    41.             close(fd_btaddr);  
    42. …………  
    43.     }  
    44.   
    45.       
    46.   
    47.     memset(resp, 0, sizeof(resp));  
    48.     memset(&bt_para_tmp, 0, sizeof(BT_PSKEY_CONFIG_T) );  
    49.     ret = getPskeyFromFile(  (void *)(&bt_para_tmp) );//ret = get_pskey_from_file(&bt_para_tmp);//(2)、PSKey参数、射频参数的设定;  
    50.        if(ret != 0){//参数失败处理  
    51.             fprintf(stderr, "get_pskey_from_file faill \n");  
    52.               
    53.             if(read_btmac == 1){  
    54.                 memcpy(bt_para_setting.device_addr, bt_mac_bin, sizeof(bt_para_setting.device_addr));// (3)、 读取失败,把bt_para_setting中defaut参数写入;  
    55.             }  
    56.             if (write(fd, (char *)&bt_para_setting, sizeof(BT_PSKEY_CONFIG_T)) != sizeof(BT_PSKEY_CONFIG_T)) {  
    57.                 fprintf(stderr, "Failed to write reset command\n");  
    58.                 return -1;  
    59.             }  
    60.         }else{//getpskey成功处理  
    61.               
    62.             if(read_btmac == 1){  
    63.                 memcpy(bt_para_tmp.device_addr, bt_mac_bin, sizeof(bt_para_tmp.device_addr));  
    64.             }  
    65. …………  
    66.     return 0;  
    67. }



    (1)、这部分检查bt_mac,如果存在,从文件中读取,如果不存在,随机生成,并写入相应文件/productinfo/btmac.txt;
    (2)、PSKey参数、射频参数的设定;get_pskey_from_file(&bt_para_tmp);这个函数后面分析;
    (3)、读取失败,把bt_para_setting中defaut参数写入;频率、主从设备设定等……



    1. // pskey file structure default value  
    2. BT_PSKEY_CONFIG_T bt_para_setting={  
    3. 5,  
    4. 0,  
    5. 0,  
    6. 0,  
    7. 0,  
    8. 0x18cba80,  
    9. 0x001f00,  
    10. 0x1e,  
    11. {0x7a00,0x7600,0x7200,0x5200,0x2300,0x0300},  
    12. …………  
    13. };



    5、get_pskey_from_file 解析相关射频参数idh.code\external\bluetooth\bluez\tools\pskey_get.c



    1. int getPskeyFromFile(void *pData)  
    2. {  
    3. …………  
    4.         char *BOARD_TYPE_PATH = "/dev/board_type";//(1)、判断PCB的版本;  
    5.         int fd_board_type;  
    6.         char board_type_str[MAX_BOARD_TYPE_LEN] = {0};  
    7.         int board_type;  
    8.         char *CFG_2351_PATH_2 = "/productinfo/2351_connectivity_configure.ini";//(2)、最终生成ini文件存储的位置;  
    9.         char *CFG_2351_PATH[MAX_BOARD_TYPE];  
    10.         (3)、针对不同PCB版本,不同的ini配置文件;  
    11.         CFG_2351_PATH[0] = "/system/etc/wifi/2351_connectivity_configure_hw100.ini";  
    12.         CFG_2351_PATH[1] = "/system/etc/wifi/2351_connectivity_configure_hw102.ini";  
    13.         CFG_2351_PATH[2] = "/system/etc/wifi/2351_connectivity_configure_hw104.ini";



    (4)、下面函数就不做具体分析,大致意识是,根据/dev/board_type中,读取的PCB类型,设置不同的ini文件。   

    1. ………………  
    2.     ret = chmod(CFG_2351_PATH_2, 0644);  
    3.     ALOGE("chmod 0664 %s ret:%d\n", CFG_2351_PATH_2, ret);    
    4.     if(pBuf == pBuf2)  
    5.         free(pBuf1);  
    6. ………………  
    7. }


    (1)、判断PCB的版本;char *BOARD_TYPE_PATH = "/dev/board_type";

    Android 蓝牙底层学习 android 蓝牙架构图_串口_09

    (2)、最终生成ini文件存储的位置,就是系统运行时读取ini文件的地方;char *CFG_2351_PATH_2 ="/productinfo/2351_connectivity_configure.ini";
    (3)、针对不同PCB版本,不同的ini配置文件;

    1. CFG_2351_PATH[0] = "/system/etc/wifi/2351_connectivity_configure_hw100.ini";  
    2. CFG_2351_PATH[1] = "/system/etc/wifi/2351_connectivity_configure_hw102.ini";  
    3. CFG_2351_PATH[2] = "/system/etc/wifi/2351_connectivity_configure_hw104.ini";



    Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_10

    (4)、下面函数就不做具体分析,大致意识是,根据/dev/board_type中,读取的PCB类型,设置不同的ini文件。         覆盖到(2)中的文件。四、HCI_UART_H4和H4层的加入

    Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_11

    uart->hci_uart->Uart-H4->hci:从uart开始分析,介绍整个驱动层数据流(涉及tty_uart中断,   线路层ldisc_bcsp、tasklet、work queue、skb_buffer的等)

    Android 蓝牙底层学习 android 蓝牙架构图_移动开发_12

    这是数据的流动过程,最底层的也就是和硬件打交道的是uart层了,它的存在和起作用是通过串口驱动来保证的,这个请参阅附录,但是其它的层我们都不知道什么时候work的,下面来看。

    Android 蓝牙底层学习 android 蓝牙架构图_移动开发_13

    1、idh.code\kernel\drivers\bluetooth\hci_ldisc.c


    1. static int __init hci_uart_init(void)  
    2. {  
    3.     static struct tty_ldisc_ops hci_uart_ldisc;  
    4.     int err;  
    5.       
    6.   
    7.     memset(&hci_uart_ldisc, 0, sizeof (hci_uart_ldisc));  
    8.     hci_uart_ldisc.magic        = TTY_LDISC_MAGIC;  
    9.     hci_uart_ldisc.name     = "n_hci";  
    10.     hci_uart_ldisc.open     = hci_uart_tty_open;  
    11.     hci_uart_ldisc.close        = hci_uart_tty_close;  
    12.     hci_uart_ldisc.read     = hci_uart_tty_read;  
    13.     hci_uart_ldisc.write        = hci_uart_tty_write;  
    14.     hci_uart_ldisc.ioctl        = hci_uart_tty_ioctl;  
    15.     hci_uart_ldisc.poll     = hci_uart_tty_poll;  
    16.     hci_uart_ldisc.receive_buf  = hci_uart_tty_receive;  
    17.     hci_uart_ldisc.write_wakeup = hci_uart_tty_wakeup;  
    18.     hci_uart_ldisc.owner        = THIS_MODULE;  
    19.   
    20.     if ((err = tty_register_ldisc(N_HCI, &hci_uart_ldisc))) {//(1)、这部分完成ldisc的注册;  
    21.         BT_ERR("HCI line discipline registration failed. (%d)", err);  
    22.         return err;  
    23.     }  
    24.   
    25. #ifdef CONFIG_BT_HCIUART_H4  
    26.     h4_init();//(2)、我们蓝牙芯片用的是H4,这部分完成H4的注册;  
    27. #endif  
    28. #ifdef CONFIG_BT_HCIUART_BCSP  
    29.     bcsp_init();  
    30. #endif  
    31. ………………  
    32.     return 0;  
    33. }



    (1)、这部分完成ldisc的注册;tty_register_ldisc(N_HCI,&hci_uart_ldisc)
    注册了一个ldisc,这是通过把新的ldisc放在一个ldisc的数组里面实现的,tty_ldiscs是一个全局的ldisc数组里面会根据序号对应一个ldisc,这个序号就是上层通过ioctl来指定的,比如我们在前面已经看到的:
    i = N_HCI;
    ioctl(fd, TIOCSETD, &i) < 0
    可以看到这里指定的N_HCI刚好就是这里注册的这个号码15;
    (2)、蓝牙芯片用的是H4,这部分完成H4的注册;         h4_init();
    hci_uart_proto结构体的初始化:

    idh.code\kernel\drivers\bluetooth\hci_h4.c




    1. static struct hci_uart_proto h4p = {  
    2.     .id     = HCI_UART_H4,  
    3.     .open       = h4_open,  
    4.     .close      = h4_close,  
    5.     .recv       = h4_recv,  
    6.     .enqueue    = h4_enqueue,  
    7.     .dequeue    = h4_dequeue,  
    8.     .flush      = h4_flush,  
    9. };
    1.  



    H4的注册:idh.code\kernel\drivers\bluetooth\hci_h4.c



    1. int __init h4_init(void)  
    2. {  
    3.     int err = hci_uart_register_proto(&h4p);  
    4.   
    5.     if (!err)  
    6.         BT_INFO("HCI H4 protocol initialized");  
    7.     else  
    8.         BT_ERR("HCI H4 protocol registration failed");  
    9.   
    10.     return err;  
    11. }


    这是通过hci_uart_register_proto(&bcsp)来完成的,这个函数非常简单,本质如下:

    hup[p->id]= p;其中static struct hci_uart_proto*hup[HCI_UART_MAX_PROTO];也就是说把对应于协议p的id和协议p连接起来,这样设计的好处是 hci uart层本身可以支持不同的协议,包括h4、bcsp等,通过这个数组连接这些协议,等以后有数据的时候调用对应的协议来处理,这里比较关键的是h4里 面的这些函数。

    五、HCI层的加入hci的加入是通过hci_register_dev函数来做的,这时候用户通过hciconfig就可以看到有一个接口了,通过这个接口用户可以访问底层的信息了,hci0已经生成;至于它在何时被加入的,我们再看看hciattach在内核里面的处理过程;

    Android 蓝牙底层学习 android 蓝牙架构图_移动开发_14

    1、TIOCSEATD的处理流程

    Android 蓝牙底层学习 android 蓝牙架构图_操作系统_15

    Ioctl的作用是设置一个新的ldisc;
    2、HCIUARTSETPROTO的处理流程:

    Android 蓝牙底层学习 android 蓝牙架构图_操作系统_16

    这部分比较重要,注册生成hci0, 初始化3个工作队列,hci_rx_work、hci_tx_work、hci_cmd_work;完成hci部分数据、命令的接收、发送。

    六、数据在驱动的传递流程

    1、uart数据接收         这部分流程比较简单,其实就是注册一个tty驱动程序和相对应的函数,注册相应的open\close\ioctl等方法,通过应用open /dev/ttyS*操作,注册中断接收函数,接收处理蓝牙模块触发中断的数据。

    Android 蓝牙底层学习 android 蓝牙架构图_移动开发_17

    在这个中断函数里面会接受到来自于蓝牙模块的数据;在中断函数里面会先读取串口的状态寄存器判断是否是data准备好,如果准备好就调用serial_sprd_rx_chars函数来接收数据,下面看看这个函数是如何处理的:

    Android 蓝牙底层学习 android 蓝牙架构图_Android 蓝牙底层学习_18

    那就是把数据一个个的加入到uart层的缓冲区,直到底层不处于dataready状态,或者读了maxcount个数,当读完后就调用tty层的接口把数据传递给tty层,tty层则把数据交给了ldisc,于是控制权也就交给了hci_uart层;

    七、Hci_uart的数据接收它基本上就是要个二传手,通过:



    1. spin_lock(&hu->rx_lock);  
    2. hu->proto->recv(hu,(void *) data, count);  
    3. hu->hdev->stat.byte_rx+= count;  
    4. spin_unlock(&hu->rx_lock);



    把数据交给了在它之上的协议层,对于我们的设置来说实际上就交给了h4层;
    八、H4层处理这层主要是通过函数h4_recv来处理的,根据协议处理包头、CRC等,然后调用更上层的hci_recv_frame来处理已经剥去h4包头的数据;

    如图:

    Android 蓝牙底层学习 android 蓝牙架构图_串口_19


    九、HCI以上的处理

    Android 蓝牙底层学习 android 蓝牙架构图_串口_20

    这里的hci_rx_work前面已经看到它了,它是一个工作队列用来处理hci层的数据接收的;先看是否有进程打开hci的socket用来监听数据,如果有的话,就把数据的一个copy发送给它,然后根据包的类型调用不同的处理函数,分别对应于event、acl、sco处理;

    hci_event_packet是对于事件的处理,里面包含有包括扫描,信号,授权,pin码,总之基本上上层所能收到的事件,基本都是在这里处理的,它的很多信息都是先存起来,等待上层的查询然后才告诉上层;

    hci_acldata_packet是一个经常的情况,也就是说上层通常都是使用的是l2cap层的接口,而l2cap就是基于这个的,如下图所示:

    Android 蓝牙底层学习 android 蓝牙架构图_ci_21

    到这里如果有基于BTPROTO_L2CAP的socket,那么这个socket就可以收到数据了;再看看BTPROTO_RFCOMM的流程:

    Android 蓝牙底层学习 android 蓝牙架构图_串口_22

    十、 数据流程的总结简单总结一下,数据的流程,
    |基本上是:
    1, uart口取得蓝牙模块的数据;
    2, uart口通过ldisc传给hci_uart;
    3, hci_uart传给在其上的h4;
    4, h4传给hci层;
    5, hci层传给l2cap层
    6, l2cap层再传给rfcomm;