本文作者:何海涛

一、什么是channel

我们来看《Go语言编程》中的一段话

channel是Go语言在语言级别提供的goroutine间的通信方式,是一种进程内的通信方式。


通俗点儿解释就是channel可以在两个或者多个goroutine之间传递消息。在Go中,goroutine和channel是并发编程的两大基石,goroutine用来执行并发任务,channel用来在goroutine之间来传递消息。

Do not communicate by sharing memory; instead, share memory by communicating. 不要通过共享内存来通信,而要通过通信来实现共享内存。


二、channel的实现


1、引入概念

首先我们来看两个例子来简单看下golang中channel是如何使用的:

package mainimport (  "fmt")func goroutineA(a chan int) {  for {    select {    case val :=       fmt.Println(val)    }  }}func main() {  ch := make(chan int)  go goroutineA(ch)  ch 3  ch 5}

很简单的一段程序,初始化了一个非缓冲的channel,然后并发一个协程去接收channel中的数据,然后往channel中连续发送两个值,首先大家先理解一组概念,什么是非缓冲型channel和缓冲型channel?对,其实很简单,make时如果channel空间不为0,就是缓冲型的channel。

ch := make(chan int)//非缓冲型ch := make(chan int, 1024)//缓冲型

如果我们将go goroutineA(ch)这行代码往下移,会发生什么?对,会报

fatal error: all goroutines are asleep - deadlock!

因为channel没有缓冲,也没有正在等待接收的goroutine,这个概念接下来我会讲到。

另外,我们会看到goroutineA的入参是a

var a chan var a chanint


大家一定要清楚接收和发送的概念

接收代表从channel读取数据 发送代表往channel写入数据


再看一个复杂点儿的例子

package mainimport (  "fmt"  "os"  "os/signal"  "syscall"  "time")var exit = make(chan string, 1)func main() {  go dealSignal()  exited := make(chan struct{}, 1)  go channel1(exited)  count := 0  t := time.Tick(time.Second)Loop:  for {    select {    case       count++      fmt.Printf("main run %d\n", count)    case       fmt.Println("main exit begin")      break Loop    }  }  fmt.Println("main exit end")}func dealSignal() {  c := make(chan os.Signal, 1)  signal.Notify(c, os.Interrupt, syscall.SIGTERM)  go func() {        exit "shutdown"  }()}func channel1(exited chanstruct{}) {  t := time.Tick(time.Second)  count := 0  for {    select {    case       count++      fmt.Printf("channel1 run %d\n", count)    case       fmt.Println("channel1 exit")      close(exited)      return    }  }}


这个例子首先并发出一个dealsign方法,用来接收关闭信号,如果接收到关闭信号后往exit channel发送一条消息,然后并发运行channel1,channel1中定了一个ticker,正常情况下channel1每秒打印第一个case语句,如果接收到exit的信号,进入第二个case,然后关闭传入的exited channel,那么main中的Loop,接收到exited关闭的信号后,打印“main exit begin”, 然后退出循环,进程成功退出。这个例子演示了channel在goroutine中起到的传递消息的作用。这个例子是为了向大家展示channel在多个goroutine之间进行通信。

2、数据结构


channel为什么会天生具备这种传递消息的特性呢,我们不禁对其底层的数据结构产生兴趣,我们来看下runtime/chan.go文件,有关channel的一切底层操作都在这个文件,我们首先来看下数据结构:

type hchan struct {  qcount   uint           // total data in the queue;chan中的元素总数  dataqsiz uint           // size of the circular queue;底层循环数组的size  buf      unsafe.Pointer // points to an array of dataqsiz elements,指向底层循环数组的指针,只针对有缓冲的channel  elemsize uint16  //chan中元素的大小  closed   uint32  //chan是否关闭  elemtype *_type // element type;元素类型  sendx    uint   // send index;已发送元素在循环数组中的索引  recvx    uint   // receive index;已接收元素在循环数组中的索引  recvq    waitq  // list of recv waiters,等待接收消息的goroutine队列  sendq    waitq  // list of send waiters,等待发送消息的goroutine队列  // lock protects all fields in hchan, as well as several  // fields in sudogs blocked on this channel.  //  // Do not change another G's status while holding this lock  // (in particular, do not ready a G), as this can deadlock  // with stack shrinking.  lock mutex}type waitq struct {  first *sudog  last  *sudog}

创建一个底层数组容量为5,元素类型为int,那么channel的数据结构如下图所示:

golang 函数返回值可以写到func 后妈_数据结构

3、创建

首先我们先来了解一下 Channel 在 Go 语言中是如何创建的,Go 语言 Channel 的创建都是由 make 关键字完成的,我们在前面介绍slice和map的创建时都介绍了使用 make 关键字初始化数据结构,那么一个问题,那么Go语言是如何实现通过make方式来创建不同的数据结构的呢?

Golang 中所有形如 make(chan int, 10) 在编译期间会先被转换成 OMAKE 类型的节点,随后的类型检查阶段在发现 make 的第一个参数是 Channel 类型时会将 OMAKE 类型的节点转换成 OMAKECHAN:

func typecheck1(n *Node, top int) (res *Node) {    switch n.Op {    case OMAKE:        // ...        switch t.Etype {        case TCHAN:            l = nil            if i < len(args) {                l = args[i]                i++                l = typecheck(l, ctxExpr)                l = defaultlit(l, types.Types[TINT])                if l.Type == nil {                    n.Type = nil                    return n                }                if !checkmake(t, "buffer", l) {                    n.Type = nil                    return n                }                n.Left = l            } else {                n.Left = nodintconst(0)            }            n.Op = OMAKECHAN        }    }


OMAKECHAN 类型的节点最终都会在SSA中间代码生成阶段之前被转换成makechan 或者 makechan64 的函数调用:


func walkexpr(n *Node, init *Nodes) *Node {    switch n.Op {    case OMAKECHAN:        size := n.Left        fnname := "makechan64"        argtype := types.Types[TINT64]        if size.Type.IsKind(TIDEAL) || maxintval[size.Type.Etype].Cmp(maxintval[TUINT]) <= 0 {            fnname = "makechan"            argtype = types.Types[TINT]        }        n = mkcall1(chanfn(fnname, 1, n.Type), n.Type, init, typename(n.Type), conv(size, argtype))    }}

创建channel的时候,其实底层是调用makechan方法,我们来看下源码:

func makechan(t *chantype, size int) *hchan {  elem := t.elem  // compiler checks this but be safe.  if elem.size >= 1<<16 {    throw("makechan: invalid channel element type")  }  if hchanSize%maxAlign != 0 || elem.align > maxAlign {    throw("makechan: bad alignment")  }  mem, overflow := math.MulUintptr(elem.size, uintptr(size))  if overflow || mem > maxAlloc-hchanSize || size < 0 {    panic(plainError("makechan: size out of range"))  }  // Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers.  // buf points into the same allocation, elemtype is persistent.  // SudoG's are referenced from their owning thread so they can't be collected.  // TODO(dvyukov,rlh): Rethink when collector can move allocated objects.  var c *hchan  switch {  case mem == 0:    // Queue or element size is zero.    c = (*hchan)(mallocgc(hchanSize, nil, true))    // Race detector uses this location for synchronization.    c.buf = c.raceaddr()  case elem.ptrdata == 0:    // Elements do not contain pointers.    // Allocate hchan and buf in one call.    c = (*hchan)(mallocgc(hchanSize+mem, nil, true))    c.buf = add(unsafe.Pointer(c), hchanSize)  default:    // Elements contain pointers.    c = new(hchan)    c.buf = mallocgc(mem, elem, true)  }  c.elemsize = uint16(elem.size)  c.elemtype = elem  c.dataqsiz = uint(size)  if debugChan {    print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")  }  return c}


可以看出makechan中其实主要的代码就是一个switch,针对不同的情况

1、case mem == 0代表无缓冲型channel,只分配hchan本身结构体大小的内存 2、case elem.ptrdata==0 代表元素类型不含指针,只分配hchan本身结构体大小+元素大小*个数的内存,是连续的内存空间 3、default元素类型包括指针,两次分配内存的操作


然后将buf指向对应的地址,然后是hchan中其他变量的赋值。

4、接收

接下来我们来讲channel的接收和发送,我们使用一段程序来进行讲解

func goroutineA(a <-chan int) {    val :=     fmt.Println("G1 received data: ", val)    return}func goroutineB(b <-chan int) {    val :=     fmt.Println("G2 received data: ", val)    return}func main() {    ch := make(chan int)    go goroutineA(ch)    go goroutineB(ch)    ch 3    time.Sleep(time.Second)}

首先创建了一个无缓冲型的channel,然后启动两个goroutine去消费channel的数据,紧接着向channel中发送数据。我们一步一步来分析channel是如何接收和发送数据的,首先来看接收,golang中接收channel数据有两种方式:

i i, ok

这两种不同的方法经过编译器的处理都会变成 ORECV 类型的节点,但是后者会在类型检查阶段被转换成 OAS2RECV 节点,我们可以简单看一下这里转换的路线图:

golang 函数返回值可以写到func 后妈_数据结构_02

// entry points for //go:nosplitfunc chanrecv1(c *hchan, elem unsafe.Pointer) {  chanrecv(c, elem, true)}//go:nosplitfunc chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {  _, received = chanrecv(c, elem, true)  return}

两者用法不同,chanrecv2可以返回channel是否关闭,但是最终调用方法都是chanrecv,我们来看下源码:

func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {  if debugChan {    print("chanrecv: chan=", c, "\n")  }  //##################step1####################  if c == nil {    if !block {      return    }    gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2)    throw("unreachable")  }  //##################step2####################  if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||    c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&    atomic.Load(&c.closed) == 0 {    return  }  var t0 int64  if blockprofilerate > 0 {    t0 = cputicks()  }  lock(&c.lock)  if c.closed != 0 && c.qcount == 0 {    if raceenabled {      raceacquire(c.raceaddr())    }    unlock(&c.lock)    if ep != nil {      typedmemclr(c.elemtype, ep)    }    return true, false  }  if sg := c.sendq.dequeue(); sg != nil {    // Found a waiting sender. If buffer is size 0, receive value    // directly from sender. Otherwise, receive from head of queue    // and add sender's value to the tail of the queue (both map to    // the same buffer slot because the queue is full).    recv(c, sg, ep, func() { unlock(&c.lock) }, 3)    return true, true  }  if c.qcount > 0 {    // Receive directly from queue    qp := chanbuf(c, c.recvx)    if raceenabled {      raceacquire(qp)      racerelease(qp)    }    if ep != nil {      typedmemmove(c.elemtype, ep, qp)    }    typedmemclr(c.elemtype, qp)    c.recvx++    if c.recvx == c.dataqsiz {      c.recvx = 0    }    c.qcount--    unlock(&c.lock)    return true, true  }  if !block {    unlock(&c.lock)    return false, false  }  // no sender available: block on this channel.  gp := getg()  mysg := acquireSudog()  mysg.releasetime = 0  if t0 != 0 {    mysg.releasetime = -1  }  // No stack splits between assigning elem and enqueuing mysg  // on gp.waiting where copystack can find it.  mysg.elem = ep  mysg.waitlink = nil  gp.waiting = mysg  mysg.g = gp  mysg.isSelect = false  mysg.c = c  gp.param = nil  c.recvq.enqueue(mysg)  goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)  // someone woke us up  if mysg != gp.waiting {    throw("G waiting list is corrupted")  }  gp.waiting = nil  if mysg.releasetime > 0 {    blockevent(mysg.releasetime-t0, 2)  }  closed := gp.param == nil  gp.param = nil  mysg.c = nil  releaseSudog(mysg)  return true, !closed}

由于源码较多,我们逐个step进行讲解;

(1)step1

如果channel是nil:如果是非阻塞模式,直接返回(false,false);如果是阻塞模式,调用goprak挂起goroutine,会阻塞下去。

//##################step1####################  if c == nil {    if !block {      return    }    gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2)    throw("unreachable")  }
(2)step2


快速操作(不用获取锁,快速返回),三组条件全部满足,快速返(false,false)

条件1:首先是在非阻塞模式下 条件2:如果是非缓冲型(datasiz=0)并且等待发送goroutine队列为空(sendq.first=nil,就是没人往channel写数据),或者缓冲型channel(datasiz>0)并且buf中没有数据; 条件3:channel未关闭

//##################step2####################  if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||    c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&    atomic.Load(&c.closed) == 0 {    return  }
(3)step3


首先加锁,如果channel已经关闭,并且buf中没有元素,返回对应类型的0值,但是received为false;两种情况

情形1:非缓冲型,channel已关闭

情形2:缓冲型,channel已关闭,并且buf无元素

//##################step3####################  lock(&c.lock)  if c.closed != 0 && c.qcount == 0 {    if raceenabled {      raceacquire(c.raceaddr())    }    unlock(&c.lock)    if ep != nil {      typedmemclr(c.elemtype, ep)    }    return true, false  }
(4)step4


如果等待发送队列中有元素,证明channel已经满了,两种情形

情形1:非缓冲型,无buf

情形2:缓冲型,buf满了

//##################step4####################if sg := c.sendq.dequeue(); sg != nil {    recv(c, sg, ep, func() { unlock(&c.lock) }, 3)    return true, true  }

两种情形都正常进入recv方法,我们来看下源码:

func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {  //##################step4-1####################  if c.dataqsiz == 0 {    if raceenabled {      racesync(c, sg)    }    if ep != nil {      // copy data from sender      recvDirect(c.elemtype, sg, ep)    }  } else {     //##################step4-2####################    // Queue is full. Take the item at the    // head of the queue. Make the sender enqueue    // its item at the tail of the queue. Since the    // queue is full, those are both the same slot.    qp := chanbuf(c, c.recvx)    if raceenabled {      raceacquire(qp)      racerelease(qp)      raceacquireg(sg.g, qp)      racereleaseg(sg.g, qp)    }    // copy data from queue to receiver    if ep != nil {      typedmemmove(c.elemtype, ep, qp)    }    // copy data from sender to queue    typedmemmove(c.elemtype, qp, sg.elem)    c.recvx++    if c.recvx == c.dataqsiz {      c.recvx = 0    }    c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz  }  sg.elem = nil  gp := sg.g  unlockf()  gp.param = unsafe.Pointer(sg)  if sg.releasetime != 0 {    sg.releasetime = cputicks()  }  goready(gp, skip+1)}

step4-1:如果是非缓冲型,那么直接从发送者的栈copy到接收者的栈

step4-2:缓冲型的,但是buf已经满了,此时recvx和sendx是重合的,如下图

golang 函数返回值可以写到func 后妈_golang for循环_03

首先将recvx处的元素0拷贝到接收地址,然后将下一个元素5拷贝到sendx,然后recvx和sendx分别加1。

step4-3:然后唤醒等待发送队列中的goroutine,等待调度器调度。

(5)step5

没有等待发送的队列,并且buf中有元素,直接把接收游标处的数据copy到接收数据的地址,然后改变hchan中元素数据。

if c.qcount > 0 {    // Receive directly from queue    qp := chanbuf(c, c.recvx)    if raceenabled {      raceacquire(qp)      racerelease(qp)    }    if ep != nil {      typedmemmove(c.elemtype, ep, qp)    }    typedmemclr(c.elemtype, qp)    c.recvx++    if c.recvx == c.dataqsiz {      c.recvx = 0    }    c.qcount--    unlock(&c.lock)    return true, true  }
(6)step6


如果是非阻塞,那么直接返回;如果是阻塞的,构造sudog,保存各种值;将sudog保存到channel的recvq中,调用goparkunlock将goroutine挂起

if !block {    unlock(&c.lock)    return false, false  }// no sender available: block on this channel.  gp := getg()  mysg := acquireSudog()  mysg.releasetime = 0  if t0 != 0 {    mysg.releasetime = -1  }  // No stack splits between assigning elem and enqueuing mysg  // on gp.waiting where copystack can find it.  mysg.elem = ep  mysg.waitlink = nil  gp.waiting = mysg  mysg.g = gp  mysg.isSelect = false  mysg.c = c  gp.param = nil  c.recvq.enqueue(mysg)  goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)  // someone woke us up  if mysg != gp.waiting {    throw("G waiting list is corrupted")  }  gp.waiting = nil  if mysg.releasetime > 0 {    blockevent(mysg.releasetime-t0, 2)  }  closed := gp.param == nil  gp.param = nil  mysg.c = nil  releaseSudog(mysg)  return true, !closed

我们用本节一开始的例子来讲解下,再贴一遍程序

func goroutineA(a <-chan int) {    val :=     fmt.Println("G1 received data: ", val)    return}func goroutineB(b <-chan int) {    val :=     fmt.Println("G2 received data: ", val)    return}func main() {    ch := make(chan int)    go goroutineA(ch)    go goroutineB(ch)    ch 3    time.Sleep(time.Second)}


由于我们创建的channel是无缓冲型的,所以两个goroutine启动的G1和G2会被阻塞,G1和G2被加入到recvq中,状态为waiting,等待被唤醒。此时此刻ch如下图:

golang 函数返回值可以写到func 后妈_Go_04

问题:当一个channel关闭后,我们是否还能从中读出数据?

package mainimport "fmt"func main() {  ch := make(chan int, 6)  ch 1  ch 2  close(ch)  a :=   fmt.Println(a)  b :=   fmt.Println(b)  c :=   fmt.Println(c)}

输出会是什么?

120


我们可以看出,当一个channel关闭后,我们依然可以从中读出数据,如果chan的buf中有元素,则读出的是chan中buf的数据,如果buf为空,则输出对应元素类型的零值。那么我们来看下如下的一段程序:

package mainimport (  "fmt"  "os"  "os/signal"  "syscall"  "time")var exit1 = make(chan struct{}, 1)func main() {  go dealSignal1()  count := 0  t := time.Tick(time.Second)  for {    select {    case       count++      fmt.Printf("main run %d\n", count)    case       fmt.Println("main exit begin")    }  }  fmt.Println("main exit over")}func dealSignal1() {  c := make(chan os.Signal, 2)  signal.Notify(c, os.Interrupt, syscall.SIGTERM)  go func() {        close(exit1)  }()}

上面这段程序会有什么问题?

5、发送

我们继续往下走,G1、G2被挂起后,往channel中发送一个数据3,其实调用的是chansend方法,我们还是逐步的去讲解

(1)step1


如果channel=nil,当前goroutine会被挂起

if c == nil {    if !block {      return false    }    gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)    throw("unreachable")  }
(2)step2

依然是一个不加锁的快速操作,三组条件

条件1:非阻塞

条件2:channel未关闭

条件3:channel是非缓冲型,并且等待接收队列为空;或者缓冲型,并且循环数组已经满了

if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||    (c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {    return false  }
(3)step3


加锁,如果channel已经关闭,直接panic

lock(&c.lock)if c.closed != 0 {    unlock(&c.lock)    panic(plainError("send on closed channel"))}
(4)step4


如果等待接收队列不为空,说明什么?

情形1:非缓冲型,等待接收队列不为空

情形2:缓冲型,等待接收队列不为空(说明buf为空)

两种情形,都是直接将待发送数据直接copy到接收处

if sg := c.recvq.dequeue(); sg != nil {    // Found a waiting receiver. We pass the value we want to send    // directly to the receiver, bypassing the channel buffer (if any).    send(c, sg, ep, func() { unlock(&c.lock) }, 3)//直接从ep copy到sg    return true}func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {  if raceenabled {    if c.dataqsiz == 0 {      racesync(c, sg)    } else {      // Pretend we go through the buffer, even though      // we copy directly. Note that we need to increment      // the head/tail locations only when raceenabled.      qp := chanbuf(c, c.recvx)      raceacquire(qp)      racerelease(qp)      raceacquireg(sg.g, qp)      racereleaseg(sg.g, qp)      c.recvx++      if c.recvx == c.dataqsiz {        c.recvx = 0      }      c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz    }  }  if sg.elem != nil {    sendDirect(c.elemtype, sg, ep)    sg.elem = nil  }  gp := sg.g  unlockf()  gp.param = unsafe.Pointer(sg)  if sg.releasetime != 0 {    sg.releasetime = cputicks()  }  goready(gp, skip+1)}

两种情形,都直接从一个用一个goroutine操作另一个goroutine的栈,因此在sendDirect方法中会有一次写屏障

func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) {  // src is on our stack, dst is a slot on another stack.  // Once we read sg.elem out of sg, it will no longer  // be updated if the destination's stack gets copied (shrunk).  // So make sure that no preemption points can happen between read & use.  dst := sg.elem  typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)  // No need for cgo write barrier checks because dst is always  // Go memory.  memmove(dst, src, t.size)}
(5)step5


如果等待队列为空,并且缓冲区未满,肯定是缓冲型的channel

if c.qcount < c.dataqsiz {    // Space is available in the channel buffer. Enqueue the element to send.    qp := chanbuf(c, c.sendx)    if raceenabled {      raceacquire(qp)      racerelease(qp)    }    typedmemmove(c.elemtype, qp, ep)    c.sendx++    if c.sendx == c.dataqsiz {      c.sendx = 0    }    c.qcount++    unlock(&c.lock)    return true  }

将元素放在sendx处,然后sendx加1,channel总量加1

(6)step6

如果以上情况都没有命中,说明什么?说明channel已经满了,如果是非阻塞的直接返回,否则需要调用gopack将这个goroutine挂起,等待被唤醒。

if !block {    unlock(&c.lock)    return false  }  // Block on the channel. Some receiver will complete our operation for us.  gp := getg()  mysg := acquireSudog()  mysg.releasetime = 0  if t0 != 0 {    mysg.releasetime = -1  }  // No stack splits between assigning elem and enqueuing mysg  // on gp.waiting where copystack can find it.  mysg.elem = ep  mysg.waitlink = nil  mysg.g = gp  mysg.isSelect = false  mysg.c = c  gp.waiting = mysg  gp.param = nil  c.sendq.enqueue(mysg)  goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3)  // Ensure the value being sent is kept alive until the  // receiver copies it out. The sudog has a pointer to the  // stack object, but sudogs aren't considered as roots of the  // stack tracer.  KeepAlive(ep)

我们对照程序分析下,在前一个小节G1、G2被挂起来了,等待sender的解救;这时候往ch中发送了一个3,(step4)这时sender发现ch的等待接收队列recvq中有receiver,就会出队一个sudog,然后将元素直接copy到sudog的elem处,然后调用goready将G1唤醒,继续执行G1原来的代码,打印出结果。如下图:

golang 函数返回值可以写到func 后妈_sed_05

6、关闭

close一个channel会调用closechan方法,比较简单,我们也来看下

(1)step1

如果channel为nil,会直接panic

if c == nil {    panic(plainError("close of nil channel"))  }
(2)step2

加锁,如果channel已经关闭,再次关闭会panic

lock(&c.lock)  if c.closed != 0 {    unlock(&c.lock)    panic(plainError("close of closed channel"))  }
(3)step3

首选将hchan对应close标志置为1,然后声明一个链表;将等待接收队列中的所有sudog加入到链表,并将其elem赋予一个相应类型的0值;

c.closed = 1  var glist gList  // release all readers  for {    sg := c.recvq.dequeue()    if sg == nil {      break    }    if sg.elem != nil {      typedmemclr(c.elemtype, sg.elem)      sg.elem = nil    }    if sg.releasetime != 0 {      sg.releasetime = cputicks()    }    gp := sg.g    gp.param = nil    if raceenabled {      raceacquireg(gp, c.raceaddr())    }    glist.push(gp)  }
(4)step4


将所有等待发送队列的sudog加入链表

// release all writers (they will panic)  for {    sg := c.sendq.dequeue()    if sg == nil {      break    }    sg.elem = nil    if sg.releasetime != 0 {      sg.releasetime = cputicks()    }    gp := sg.g    gp.param = nil    if raceenabled {      raceacquireg(gp, c.raceaddr())    }    glist.push(gp)  }  unlock(&c.lock)
(5)step5

唤醒sudog所有goroutine

for !glist.empty() {    gp := glist.pop()    gp.schedlink = 0    goready(gp, 3)  }

三、问题

问题1:哪些操作会使channel发生panic?


三种情况

情况1:往一个已经关闭的channel写数据情况2:关闭一个nil的channel情况3:关闭一个已经关闭的channel


问题2:channel是并发安全的吗?


问题3:当一个channel关闭后,我们是否还能从channel读到数据?

可以,只不过接收的是无效数据

问题4:channel发送和接收元素的本质是什么?

值的拷贝

看一段示例

package mainimport (  "fmt"  "time")func print(u chan int) {  time.Sleep(2 * time.Second)  fmt.Println("print int", }func main() {  c := make(chan int, 5)  a := 0  c   fmt.Println(a)  // modify g  a = 1  go print(c)  time.Sleep(5 * time.Second)  fmt.Println(a)}


再看一段复杂一点的

package mainimport (  "fmt"  "time")type people struct {  name string}var u = people{name: "A"}func printPeople(u chan *people) {  time.Sleep(2 * time.Second)  fmt.Println("printPeople", }func main() {  c := make(chan *people, 5)  var a = &u  c   fmt.Println(a)  // modify g  a = &people{name:"B"}  go printPeople(c)  time.Sleep(5 * time.Second)  fmt.Println(a)}


输出会是什么

&{A}printPeople &{A}&{B}

因为chan中保存的是u的地址的值的拷贝,这个地址未发生改变,虽然调用a = &people{name:"B"}重新赋予了a新的地址,但是channel中的未改变。