Advancedeast项目地址:https://github.com/huoyijie/AdvancedEAST 环境:VS2017+opencv4.1.2
运行结果如下:
基本步骤:
首先介绍一下与AdvancedEAST的使用相关的一些原理.AdvancedEAST的网络结构如下图:
图片输入网络后依次输出三种数据,简单使用的话可以只用第一个,我只用了第一个.
从网络结构也可以看出来有三个输出网络,第一个是score,可以通过score的值判断图片上的点是否属于文本的区域,一般大于10是文本的像素点.score相当于是否属于文本的置信度.
第二个输出网络是code,数据的第一位表示该像素是否属于边界像素,第二个判断是头部的像素还是尾部的像素.
第三个输出的数据输出的4位geo,是边界像素可以预测的2个顶点坐标,原文是这么说,不过我没有搞清楚是做什么的,希望有大佬可以告知.
使用opencv的readnet函数读取Advancedeast的模型,我用的是现成的模型,如果需要自己训练模型,可以参见原项目.
网络的输出是长和宽为原图像的四分之一的矩阵,假设我们读入的图片为640640,则score为一个160160的矩阵,矩阵中i行j列的score,代表原图中4i行,4j列元素及其临近区域是否是文本区域.
具体代码如下:
#include "pch.h"
#include <iostream>
#include<opencv2/opencv.hpp>
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
using namespace cv::dnn;
//解码
void decode(const Mat &scores, const Mat &geometry);
Mat text_detect(Mat srcImg, int inpWidth, int inpHeight, float confThreshold, float nmsThreshold, Net net)
{
//输出
std::vector<Mat> output;
std::vector<String> outputLayers(4);
outputLayers[0] = "side_vertex_coord/convolution";
outputLayers[1] = "side_vertex_code/convolution";
outputLayers[2] = "inside_score/convolution";
outputLayers[3] = "east_detect/concat";
//检测图像
Mat frame, blob;
frame = srcImg.clone();
//获取深度学习模型的输入
blobFromImage(frame, blob, 1.0, Size(inpWidth, inpHeight), Scalar(123.68, 116.78, 103.94), true, false);
net.setInput(blob);
//输出结果
net.forward(output, outputLayers);
//置信度
Mat scores = output[3];
//位置参数
Mat geometry = output[0];
// Decode predicted bounding boxes, 对检测框进行解码,获取文本框位置方向
//文本框位置参数
decode(scores, geometry);
return frame;
}
//模型地址
auto model = "K:\\UC下载\\east_model_3T256.pb";
//auto model = "./model/frozen_east_text_detection.pb";
//检测图像
auto detect_image = "J:\\MFCApplication1 - 副本\\Testimage\\001019080900028_0113_1.jpg";
//输入框尺寸
auto inpWidth = 640;
auto inpHeight = 640;
//置信度阈值
auto confThreshold = 0.5;
//非极大值抑制算法阈值
auto nmsThreshold = 0.1;
Mat srcImg;
Mat heibai(160, 160, CV_8UC1);
//轮廓按照面积大小升序排序
bool ascendSort(vector<Point> a, vector<Point> b) {
return a.size() < b.size();
}
//轮廓按照面积大小降序排序
bool descendSort(vector<Point> a, vector<Point> b) {
return a.size() > b.size();
}
int main()
{
//读取模型
Net net = readNet(model);
//读取检测图像
//vector<String> layer_names = net.getLayerNames();
//for (int i = 0; i < layer_names.size(); i++) {
// int id = net.getLayerId(layer_names[i]);
// auto layer = net.getLayer(id);
// printf("layer id:%d, type: %s, name:%s \n", id, layer->type.c_str(), layer->name.c_str());
//}
//system("pause"); // 用双引号,不要用单引号
srcImg = imread(detect_image);
int or_h = srcImg.rows;
int or_w = srcImg.cols;
resize(srcImg, srcImg, Size(640, 640));
if (!srcImg.empty())
{
cout << "read image success!" << endl;
}
Mat resultImg = text_detect(srcImg, inpWidth, inpHeight, confThreshold, nmsThreshold, net);
srcImg = imread(detect_image);
//Mat element = getStructuringElement(MORPH_RECT, Size(3, 3));
//dilate(heibai, heibai, element);
vector< vector< Point> > contours; //用于保存所有轮廓信息
vector<Point> tempV; //暂存的轮廓
findContours(heibai, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
//轮廓按照面积大小进行升序排序
sort(contours.begin(), contours.end(), descendSort);//升序排序
vector<vector<Point> >::iterator itc = contours.begin();
/*Mat element = getStructuringElement(MORPH_RECT, Size(3, 3));
erode(heibai, heibai, element);*/
while (itc != contours.end())
{
int y = itc->size();
if (itc->size() < 29)
{
itc = contours.erase(itc);
}
else
{
++itc;
}
}
//draw
Mat B;
heibai.copyTo(B);
drawContours(B, contours, -1, Scalar(0, 0, 0), FILLED);
heibai = heibai - B;
findContours(heibai, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point());
heibai.copyTo(B);
int i = 0;
vector<vector<Point> >::iterator itr = contours.begin();
int last_i = 0;
for (int i = 0; i < contours.size(); i++)
{
Mat tmp(contours.at(i));
Moments moment = moments(tmp, false);
if (moment.m00 != 0)//除数不能为0
{
int x = cvRound(moment.m10 / moment.m00);//计算重心横坐标
int y = cvRound(moment.m01 / moment.m00);//计算重心纵坐标
if (x < 30 || y < 30||x>120||y>120)
{
vector< vector< Point> > contours2; //用于保存面积不足100的轮廓
for (int j = last_i; j < i; j++)
{
++itr;
}
last_i = i;
contours2.push_back(*itr);
drawContours(heibai, contours2, -1, Scalar(0, 0, 0), FILLED);
}
}
}
//heibai = B- heibai;
Mat element = getStructuringElement(MORPH_RECT, Size(3, 3));
dilate(heibai, heibai, element);
findContours(heibai, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
Mat tmp1(contours.at(0));
RotatedRect rect = minAreaRect(tmp1);
Point2f fourPoint2f[4];
rect.points(fourPoint2f);
float ratio_h = (float)or_h / 640;
float ratio_w = (float)or_w / 640;
fourPoint2f[0].x = fourPoint2f[0].x * 4 * ratio_w;
fourPoint2f[0].y = fourPoint2f[0].y * 4 * ratio_h;
fourPoint2f[1].x = fourPoint2f[1].x * 4 * ratio_w;
fourPoint2f[1].y = fourPoint2f[1].y * 4 * ratio_h;
fourPoint2f[2].x = fourPoint2f[2].x * 4 * ratio_w;
fourPoint2f[2].y = fourPoint2f[2].y * 4 * ratio_h;
fourPoint2f[3].x = fourPoint2f[3].x * 4 * ratio_w;
fourPoint2f[3].y = fourPoint2f[3].y * 4 * ratio_h;
line(srcImg, fourPoint2f[0], fourPoint2f[1], Scalar(0, 255, 0), 2);
line(srcImg, fourPoint2f[1], fourPoint2f[2], Scalar(0, 255, 0), 2);
line(srcImg, fourPoint2f[2], fourPoint2f[3], Scalar(0, 255, 0), 2);
line(srcImg, fourPoint2f[3], fourPoint2f[0], Scalar(0, 255, 0), 2);
imshow("result", srcImg);
waitKey();
return 0;
}
void decode(const Mat &scores, const Mat &geometry)
{
const int height = geometry.size[2];
const int width = geometry.size[3];
for (int y = 0; y < height; y++)
{
//识别概率
const float *isinside= scores.ptr<float>(0, 0, y);
const float *isbound = scores.ptr<float>(0, 1, y);
const float *headorwei = scores.ptr<float>(0, 2, y);
const float *x_1 = geometry.ptr<float>(0, 0, y);
const float *y_1 = geometry.ptr<float>(0, 1, y);
const float *x_2 = geometry.ptr<float>(0, 2, y);
const float *y_2 = geometry.ptr<float>(0, 3, y);
//遍历所有检测到的检测框
for (int x = 0; x < width; x++)
{
float isinside_1 = isinside[x];
float isbound_1 = isbound[x];
float headorwei_1 = headorwei[x];
float x_11 = x_1[x];
float y_11 = y_1[x];
float x_22 = x_2[x];
float y_22 = y_2[x];
float offsetX = x * 4.0f, offsetY = y * 4.0f;
//低于阈值忽略该检测框
if (isinside_1 <15)
{
heibai.at<uchar>(y, x) = 0;
continue;
}
circle(srcImg,Point(offsetX, offsetY),2, Scalar(0, 255, 0),-1);
heibai.at<uchar>(y, x)=255;
}
}
}
所用模型:
链接:https://pan.baidu.com/s/1EVdtCnY8lwylCgCqvnrwkw 提取码:ojge