关系型数据和文档型数据库有什么区别?

关系数据库(Relational Database)是建立在关系模型基础上的数据库,借助于几何代数等数学概念和方法来处理数据库中的数据。所谓关系模型是一对一、一对多或者多对多等关系,支持事务和持久化,关系型数据库都会支持的 ACID 特性,也就是原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability),一般遵循三范式设计思想,常见的关系型数据库有 Oracle、SQL Server、DB2、MySQL 等。

而文档型数据库是一种非关系型数据库,非关系型数据库(Not Only SQL,NoSQL)正好与关系型数据库相反,它不是建立在“关系模型”上的数据库。文档型数据库的典型代表是 MongoDB。

非关系型数据库和文档型数据库有什么区别?

非关系型数据和文档型数据库属于包含关系,非关系型数据包含了文档型数据库,文档型数据库属于非关系型数据。

非关系型数据通常包含 3 种数据库类型:文档型数据库、键值型数据库和全文搜索型数据库,下面分别来看每种类型的具体用途。

1. 文档型数据库

文档型数据库以 MongoDB 和 Apache CouchDB 为代表,文档型数据库通常以 JSON 或者 XML 为格式进行数据存储。

以 MongoDB 为例,它是由 C++ 编写的一种面向文档的数据库管理系统,在 2007 年 10 月 由 10gen 团队所开发,并在 2009 年 2 月首度推出。MongoDB 是以二进制 JSON 格式存储数据的,MongoDB 对 JSON 做了一些优化,它支持了更多的数据类型,这种二进制存储的 JSON 我们也可以称之为 BSON(Binary JSON)。

BSON 具备三个特点:轻量、可遍历以及高效,它的缺点是空间利用率不是很理想。MongoDB 使用 BSON 进行存储的另一个重要原因是 BSON 具备可遍历性。

MongoDB 存储结构示例如下:

{"_id":ObjectId(“57ce2d4cce8685a6fd9df3a3"),"name":"老王","email":['java@qq.com','java@163.com']}

其中,“_id”为 MongoDB 默认的主键字段,它会为我们生成一起全局唯一的 id 值,并且这个值在做数据分片时非常有用。

文档型数据库的使用场景如下。

• 敏捷开发,因为 MongoDB 拥有比关系型数据库更快的开发速度,因此很多敏捷开发组织,包括纽约时报等都采用了 MongoDB 数据库。使用它可以有效地避免在增加和修改数据库带来的沟通成本,以及维护和创建数据库模型成本,使用 MongoDB 只需要在程序层面严格把关就行,程序提交的数据结构可以直接更新到数据库中,并不需要繁杂的设计数据库模型再生成修改语句等过程。

• 日志系统,使用 MongoDB 数据库非常适合存储日志,日志对应到数据库中就是很多个文件,而 MongoDB 更擅长存储和查询文档,它提供了更简单的存储和更方便的查询功能。

• 社交系统,使用 MongoDB 可以很方便的存储用户的位置信息,可以方便的实现查询附近的人以及附近的地点等功能。

2. 键值型数据库

键值数据库也就是 Key-Value 数据库,它的典型代表数据库是 Redis 和 Memcached,而它们通常被当做非持久化的内存型数据库缓存来使用。当然 Redis 数据库是具备可持久化得能力的,但是开启持久化会降低系统的运行效率,因此在使用时需要根据实际的情况,选择开启或者关闭持久化的功能。

键值型数据库以极高的性能著称,且除了 Key-Value 字符串类型之外,还包含一些其他的数据类型。以 Redis 为例,它提供了字符串类型(String)、列表类型(List)、哈希表类型(Hash)、集合类型(Set)、有序集合类型(ZSet)等五种最常用的基础数据类型,还有管道类型(Pipeline)、地理位置类型(GEO)、基数统计类型(HyperLogLog)和流类型(Stream),并且还提供了消息队列的功能。

此数据库的优点是性能比较高,缺点是对事务的支持不是很好。

3. 全文搜索型数据库

传统的关系型数据库主要是依赖索引来实现快速查询功能的,而在全文搜索的业务下,索引很难满足查询的需求。因为全文搜索需要支持模糊匹配的,当数据量比较大的情况下,传递的关系型数据库的查询效率是非常低的;另一个原因是全文搜索需要支持多条件随意组合排序,如果要通过索引来实现的话,则需要创建大量的索引,而传统型数据库也很难实现,因此需要专门全文搜索引擎和相关的数据库才能实现此功能。

全文搜索型数据库以 ElasticSearch 和 Solr /sɔ:lʌ/为代表,它们的出现解决了关系型数据库全文搜索功能较弱的问题。

MongoDB

谈谈你对mongodb的理解?特性?mongodb用来做什么的?

是一个基于分布式文件存储的数据库(文档型数据库),介于关系型和非关系型数据库间。它支持的数据结构类似于JSON的BSON格式,因此可以存储比较复杂的数据类型。

Mongodb最大的特点是它支持的查询语言非常强大,支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组

使用场景:

• 敏捷开发,因为 MongoDB 拥有比关系型数据库更快的开发速度,因此很多敏捷开发组织,包括纽约时报等都采用了 MongoDB 数据库。使用它可以有效地避免在增加和修改数据库带来的沟通成本,以及维护和创建数据库模型成本,使用 MongoDB 只需要在程序层面严格把关就行,程序提交的数据结构可以直接更新到数据库中,并不需要繁杂的设计数据库模型再生成修改语句等过程。

• 日志系统,使用 MongoDB 数据库非常适合存储日志,日志对应到数据库中就是很多个文件,而 MongoDB 更擅长存储和查询文档,它提供了更简单的存储和更方便的查询功能。

• 社交系统,使用 MongoDB 可以很方便的存储用户的位置信息,可以方便的实现查询附近的人以及附近的地点等功能。

mongodb和redis区别?

(1)  Mongodb在4.0前不支持事务,靠客户端保证,redis支持事务。

(2) Redis 支持的数据结构丰富, MongoDB 数据结构比较单一,但是支持丰富的数据表达

(3) mongodb适用于存储海量数据,redis不适合存储海量数据(受物理内存限制)。

MongoDB 支持事务吗?

MongoDB 在 4.0 之前是不支持事务的,不支持的原因也很简单,因为文档型数据库和传统的关系型数据库不一样,不需要满足三范式。文档型数据库之所以性能比较高的另一个主要原因,就是使用文档型数据库不用进行多表关联性查询,因为文档型数据库会把相关的信息存放到一张表中。因此,无需关联多表查询的 MongoDB,在这种情况下的查询性能是比较高的。

把所有相关的数据都放入一个表中,这也是 MongoDB 之前很长一段时间内不支持事务的原因,它可以保证单表操作的原子性,一条记录要么成功插入,要么插入失败,不会存在插入了一半的数据。因此,在这种设计思路下,MongoDB 官方认为“事务功能”的实现没有那么紧迫。

但在 MongoDB 4.0 之中正式添加了事务的功能,并且在 MongoDB 4.2 中实现了分布式事务的功能,至此 MongoDB 开启了支持事务之旅。

常见面试题

关系型数据和文档型数据库有什么区别?

谈谈你对mongodb的理解?特性?mongodb用来做什么的?(蓝月亮1-3)

mongodb和redis区别?(蓝月亮1-3)