语音识别的三个解决方案:
原本用途:本来是要求从视频中识别语音,然后把文字内容提取出来,结果看了很多项目,中文的注释,识别的却是英文,感到授课的门槛有点低,我能看懂别人开源的代码,距离自己开发还是有距离的。后来探索了很多,比如字幕生成,把字幕不生成到视频下方而是一段一段增加到txt文本里,我也认为这是最好的办法,而且能顺便给每个字、每个句子一个时间戳。后来意识到一天的时间实在是很难完成,于是从网上找了最普通的,也是不难理解的解决方案及相关代码:还是从视频转音频,再从音频转文字。
一共三种方案:① speech_recognition加上r.recognize_sphinx(audio,language=“zh-CN”))② 百度API(科大讯飞类似)从百度手里薅羊毛真的是困难 ③ 利用TIMIT项目的解决方法去实现
方案一:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2022.1.5
# @File : duizhaozu1.py
import os
import speech_recognition as sr
def file_to_wav(file_path, wav_path, sampling_rate):
if os.path.exists(wav_path): # 如果文件存在
# 删除文件,可使用以下两种方法。
os.remove(wav_path)
# 终端命令
command = "D:/download/ffmpeg-master-latest-win64-lgpl/bin/ffmpeg.exe -i {} -ac 1 -ar {} {}".format(file_path, sampling_rate, wav_path)
os.system(command)
if __name__ == '__main__':
file_path = r'C:\Users\PineappleMan\Desktop\ok\DFS.mp4'
wav_path = r'C:\Users\PineappleMan\Desktop\ok\DFS.wav'
sampling_rate = 16000
file_to_wav(file_path, wav_path, sampling_rate)
r=sr.Recognizer()
with sr.AudioFile(wav_path) as source:
audio =r.record(source)
print("文本内容:",r.recognize_sphinx(audio,language="zh-CN"))
其中,文件为视频,如果直接是音频(wav文件)就直接把格式转换的代码删掉,代码借鉴了
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple speech_recognition
运行的时候遇到了错误就是缺少pocketsphinx:,实际上去下载一个whl就行了,我的python是3.7所以下载了链接中的,很快就能运行好了,网上很多解决方案,因为报错的是swig的问题,但是“头痛医头,脚痛医脚”,就应该机智的去下载whl去解决这个问题。
方案二:
import base64
import json
import os
import time
import uuid
import requests
import urllib.response
from inc import db_config
from inc import rtysdb
class BaiduRest:
def __init__(self, cu_id, api_key, api_secert):
self.token_url = "https://openapi.baidu.com/oauth/2.0/token?grant_type=client_credentials&client_id=%s&client_secret=%s"
self.getvoice_url = "http://tsn.baidu.com/text2audio?tex=%s&lan=zh&cuid=%s&ctp=1&tok=%s"
self.upvoice_url = 'http://vop.baidu.com/server_api'
self.cu_id = cu_id
self.get_token(api_key, api_secert)
return
def get_token(self, api_key, api_secert):
token_url = self.token_url % (api_key, api_secert)
r_str = urllib.response.urlopen(token_url).read()
token_data = json.loads(r_str)
self.token_str = token_data['access_token']
return True
# 语音合成
# def text2audio(self, text, filename):
# get_url = self.getvoice_url % (urllib.response.quote(text), self.cu_id, self.token_str)
#
#
# voice_data = urllib.response.urlopen(get_url).read()
# voice_fp = open(filename, 'wb+')
# voice_fp.write(voice_data)
# voice_fp.close()
# return True
##语音识别
def audio2text(self, filename):
data = {}
data['format'] = 'wav'
data['rate'] = 8000
data['channel'] = 1
data['cuid'] = self.cu_id
data['token'] = self.token_str
wav_fp = open(filename, 'rb')
voice_data = wav_fp.read()
data['len'] = len(voice_data)
# data['speech'] = base64.b64encode(voice_data).decode('utf-8')
data['speech'] = base64.b64encode(voice_data).replace('\n', '')
# post_data = json.dumps(data)
result = requests.post(self.upvoice_url, json=data, headers={'Content-Type': 'application/json'})
data_result = result.json()
if (data_result['err_msg'] == 'success.'):
return data_result['result'][0]
else:
return False
def test_voice(voice_file):
api_key = "vossGHIgEETS6IMRxBDeahv8"
api_secert = "3c1fe6a6312f41fa21fa2c394dad5510"
bdr = BaiduRest("0-57-7B-9F-1F-A1", api_key, api_secert)
# 生成
# start = time.time()
# bdr.text2audio("你好啊", "out.wav")
# using = time.time() - start
# print using
# 识别
# start = time.time()
result = bdr.audio2text(voice_file)
# result = bdr.audio2text("weather.pcm")
# using = time.time() - start
return result
def get_master_audio(check_status='cut_status'):
if check_status == 'cut_status':
sql = "SELECT id,url, time_long,sharps FROM ocenter_recognition WHERE status=0"
elif check_status == 'finished_status':
sql = "SELECT id,url, time_long,sharps FROM ocenter_recognition WHERE finished_status=0"
else:
return False
data = rtysdb.select_data(sql, 'more')
if data:
return data
else:
return False
def go_recognize(master_id):
section_path = "C:/Users/PineappleMan/Desktop/ok/audio1.wav"
sql = "SELECT id,rid,url,status FROM ocenter_section WHERE rid=%d AND status=0 order by id asc limit 10" % (
master_id)
# print sql
record = rtysdb.select_data(sql, 'more')
# print record
if not record:
return False
for rec in record:
# print section_path+'/'+rec[1]
voice_file = section_path + '/' + rec[2]
if not os.patcvoice_file:
continue
result = test_voice(voice_file)
print(result)
exit(0)
if result:
# rtysdb.update_by_pk('ocenter_section',rec[0],{'content':result,'status':1})
sql = "update ocenter_section set content='%s', status='%d' where id=%d" % (result, 1, rec[0]) # print sql
rtysdb.do_exec_sql(sql)
parent_content = rtysdb.select_data("SELECT id,content FROM ocenter_recognition WHERE id=%d" % (rec[1]))
# print parent_content
if parent_content:
new_content = parent_content[1] + result
update_content_sql = "update ocenter_recognition set content='%s' where id=%d" % (new_content, rec[1])
rtysdb.do_exec_sql(update_content_sql)
else:
rtysdb.do_exec_sql("update ocenter_section set status='%d' where id=%d" % (result, 1, rec[0]))
time.sleep(5)
else:
rtysdb.do_exec_sql("UPDATE ocenter_recognition SET finished_status=1 WHERE id=%d" % (master_id))
# 对百度语音识别不了的音频文件进行转换
def ffmpeg_convert():
section_path = "C:/Users/PineappleMan/Desktop/ok/audio1.wav"
# print section_path
used_audio = get_master_audio('cut_status')
# print used_audio
if used_audio:
for audio in used_audio:
audio_path = section_path + '/' + audio[1]
new_audio = uuid.uuid1()
command_line = "ffmpeg -i " + audio_path + " -ar 8000 -ac 1 -f wav " + section_path + "/Uploads/Convert/convert_" + str(
new_audio) + ".wav";
# print command_line
os.popen(command_line)
if os.path.exists(section_path + "/Uploads/Convert/convert_" + str(new_audio) + ".wav"):
convert_name = "Uploads/Convert/convert_" + str(new_audio) + ".wav"
ffmpeg_cut(convert_name, audio[3], audio[0])
sql = "UPDATE ocenter_recognition SET status=1,convert_name='%s' where id=%d" % (convert_name, audio[0])
rtysdb.do_exec_sql(sql)
# 将大音频文件切成碎片
def ffmpeg_cut(convert_name, sharps, master_id):
section_path = "C:/Users/PineappleMan/Desktop/ok/audio1.wav"
if sharps > 0:
for i in range(0, sharps):
timeArray = time.localtime(i * 30)
h = time.strftime("%H", timeArray)
h = int(h) - 8
h = "0" + str(h)
ms = time.strftime("%M:%S", timeArray)
start_time = h + ':' + str(ms)
cut_name = section_path + '/' + convert_name
db_store_name = "Uploads/Section/" + str(uuid.uuid1()) + '-' + str(i + 1) + ".wav"
section_name = section_path + "/" + db_store_name
command_line = "ffmpeg.exe -i " + cut_name + " -vn -acodec copy -ss " + start_time + " -t 00:00:30 " + section_name
# print command_line
os.popen(command_line)
data = {}
data['rid'] = master_id
data['url'] = db_store_name
data['create_time'] = int(time.time())
data['status'] = 0
rtysdb.insert_one('ocenter_section', data)
if __name__ == "__main__":
ffmpeg_convert()
audio = get_master_audio('finished_status')
if audio:
for ad in audio:
go_recognize(ad[0])
该项目参考了,但是做了很多改动!无论是官网还是这些项目,调用的包都是比较陈旧的,甚至python3已经用别的名称进行取代了。所以改动的工作量是相当大的。
方案三:
TIMIT是比较经典的英文的语音识别,找到相关代码并不难。这里就不多讲了。过两天我把每行代码做好注释再发出来。
总结
其实一天实现一个功能,尤其是对我这种考研考了很久,忘了很多东西的人来说。但是这种有目的的功能实现,还是很锻炼自己的。再接再厉吧。