线程
python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用
使用threading模块
1. t = threading.Thread(target=saySorry)
t.start() #启动线程,即让线程开始执行
saySorry 为方法名
2. 主线程会等待所有的子线程结束后才结束
3. len(threading.enumerate()) 查看线程数量
threading使用Demo
coding=utf-8
import threading
from time import sleep,ctime
def sing():
for i in range(3):
print("正在唱歌...%d"%i)
sleep(1)
def dance():
for i in range(3):
print("正在跳舞...%d"%i)
sleep(1)
if __name__ == '__main__':
print('---开始---:%s'%ctime())
t1 = threading.Thread(target=sing)
t2 = threading.Thread(target=dance)
t1.start()
t2.start()
while True:
length = len(threading.enumerate())
print('当前运行的线程数为:%d'%length)
if length<=1:
break
sleep(0.5)
线程执行代码的封装
能够看出,通过使用threading模块能完成多任务的程序开发,为了让每个线程的封装性更完美,所以使用threading模块时,往往会定义一个新的子类class,只要继承threading.Thread
就可以了,然后重写run
方法
示例如下:
#coding=utf-8
import threading
import time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "I'm "+self.name+' @ '+str(i) #name属性中保存的是当前线程的名字
print(msg)
if __name__ == '__main__':
t = MyThread()
t.start()
- python的threading.Thread类有一个run方法,用于定义线程的功能函数,可以在自己的线程类中覆盖该方法。而创建自己的线程实例后,通过Thread类的start方法,可以启动该线程,交给python虚拟机进行调度,当该线程获得执行的机会时,就会调用run方法执行线程。
线程的执行顺序
#coding=utf-8
import threading
import time
class MyThread(threading.Thread):
def run(self):
for i in range(3):
time.sleep(1)
msg = "I'm "+self.name+' @ '+str(i)
print(msg)
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
从代码和执行结果我们可以看出,多线程程序的执行顺序是不确定的。当执行到sleep语句时,线程将被阻塞(Blocked),到sleep结束后,线程进入就绪(Runnable)状态,等待调度。而线程调度将自行选择一个线程执行。上面的代码中只能保证每个线程都运行完整个run函数,但是线程的启动顺序、run函数中每次循环的执行顺序都不能确定。
- 每个线程默认有一个名字,尽管上面的例子中没有指定线程对象的name,但是python会自动为线程指定一个名字。
- 当线程的run()方法结束时该线程完成。
- 无法控制线程调度程序,但可以通过别的方式来影响线程调度的方式。
共享全局变量
from threading import Thread
import time
def work1(nums):
nums.append(44)
print("----in work1---",nums)
def work2(nums):
#延时一会,保证t1线程中的事情做完
time.sleep(1)
print("----in work2---",nums)
g_nums = [11,22,33]
t1 = Thread(target=work1, args=(g_nums,))
t1.start()
t2 = Thread(target=work2, args=(g_nums,))
t2.start()
运行结果:
----in work1--- [11, 22, 33, 44]
----in work2--- [11, 22, 33, 44]
- 在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
- 缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)
互斥锁
当多个线程几乎同时修改某一个共享数据的时候,需要进行同步控制
线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。
互斥锁为资源引入一个状态:锁定/非锁定
某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。
上锁解锁过程
当一个线程调用锁的acquire()方法获得锁时,锁就进入“locked”状态。
每次只有一个线程可以获得锁。如果此时另一个线程试图获得这个锁,该线程就会变为“blocked”状态,称为“阻塞”,直到拥有锁的线程调用锁的release()方法释放锁之后,锁进入“unlocked”状态。
线程调度程序从处于同步阻塞状态的线程中选择一个来获得锁,并使得该线程进入运行(running)状态。
使用互斥锁完成2个线程对同一个全局变量各加100万次的操作
import threading
import time
g_num = 0
def test1(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test1---g_num=%d"%g_num)
def test2(num):
global g_num
for i in range(num):
mutex.acquire() # 上锁
g_num += 1
mutex.release() # 解锁
print("---test2---g_num=%d"%g_num)
# 创建一个互斥锁
# 默认是未上锁的状态
mutex = threading.Lock()
# 创建2个线程,让他们各自对g_num加1000000次
p1 = threading.Thread(target=test1, args=(1000000,))
p1.start()
p2 = threading.Thread(target=test2, args=(1000000,))
p2.start()
# 等待计算完成
while len(threading.enumerate()) != 1:
time.sleep(1)
print("2个线程对同一个全局变量操作之后的最终结果是:%s" % g_num)
运行结果:
---test1---g_num=1909909
---test2---g_num=2000000
2个线程对同一个全局变量操作之后的最终结果是:2000000
可以看到最后的结果,加入互斥锁后,其结果与预期相符。
锁的好处:
- 确保了某段关键代码只能由一个线程从头到尾完整地执行
锁的坏处:
- 阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了
- 由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁
死锁
在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。
尽管死锁很少发生,但一旦发生就会造成应用的停止响应。下面看一个死锁的例子
#coding=utf-8
import threading
import time
class MyThread1(threading.Thread):
def run(self):
# 对mutexA上锁
mutexA.acquire()
# mutexA上锁后,延时1秒,等待另外那个线程 把mutexB上锁
print(self.name+'----do1---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexB已经被另外的线程抢先上锁了
mutexB.acquire()
print(self.name+'----do1---down----')
mutexB.release()
# 对mutexA解锁
mutexA.release()
class MyThread2(threading.Thread):
def run(self):
# 对mutexB上锁
mutexB.acquire()
# mutexB上锁后,延时1秒,等待另外那个线程 把mutexA上锁
print(self.name+'----do2---up----')
time.sleep(1)
# 此时会堵塞,因为这个mutexA已经被另外的线程抢先上锁了
mutexA.acquire()
print(self.name+'----do2---down----')
mutexA.release()
# 对mutexB解锁
mutexB.release()
mutexA = threading.Lock()
mutexB = threading.Lock()
if __name__ == '__main__':
t1 = MyThread1()
t2 = MyThread2()
t1.start()
t2.start()
避免死锁
- 程序设计时要尽量避免(银行家算法)
- 添加超时时间等