yolov4-keras每个细节详细展示
本篇文章以以下标题为索引,进行组文,如有错误,望不吝指正!
参考代码链接:https://github.com/bubbliiiing/yolov4-keras


文章目录

  • 1. yolov4的数据预处理
  • 2. yolov4的datasets生成的具体方法
  • 3. yolov4的损失函数
  • 4. yolov4的训练设置


1. yolov4的数据预处理

首先明确一下输入yolov4网络的图像内容及形状:

"""
time: 2022/04/14
author: cong
theme: image read show
"""
from PIL import Image
import cv2
import matplotlib.pyplot as plt
import numpy as np

# yolov4读入图像的两种方式

# opencv
image0 = cv2.imread('1_10.jpg')  # BGR通道
image1 = cv2.cvtColor(image0, cv2.COLOR_BGR2RGB)
image2 = Image.fromarray(np.uint8(image1)) # 转变成Image
image3 = image2.resize((416, 416), Image.BICUBIC)
image_data4  = np.expand_dims(np.array(image3, dtype='float32')/255.0, 0)
# Image
imagea = Image.open('1_10.jpg')
imageb = imagea.resize((416, 416), Image.BICUBIC)
image_datac  = np.expand_dims(np.array(imageb, dtype='float32')/255.0, 0)

以上只是先整理了yolov4读入图像的两种方式:opencv和Image。
以下代码是get_random_data函数的具体实现方式,过程涉及到:

  1. 图像随机缩放,paste到416*416的灰度图上
  2. 图像镜像
  3. 色域变换
"""
time : 2022/03/29
author : cong
theme: yolov4_get_random_data
"""
from PIL import Image
import numpy as np
import cv2


#   将图像转换成RGB图像,防止灰度图在预测时报错。代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image
    else:
        image = image.convert('RGB')
        return image


# 生成随机数
def rand(a=0, b=1):
    return np.random.rand() * (b - a) + a


# ================================================================================ #
# train_lines
train_annotation_path = '2007_train.txt'
with open(train_annotation_path) as f:
    train_lines = f.readlines()

input_shape = [416, 416]
max_boxes = 100

random = True
# train_lines[0]: '/Users/cong/yolov4-keras-master/VOCdevkit/VOC2007/JPEGImages/007826.jpg 80,217,320,273,10 197,193,257,326,8 258,180,312,314,8 10,195,93,358,8 82,252,243,372,8\n'
annotation_line = train_lines[0]
line = annotation_line.split()  # 默认切分 空格,换行,制表符,返回列表。# ['/Users/cong/yolov4-keras-master/VOCdevkit/VOC2007/JPEGImages/007826.jpg', '80,217,320,273,10','197,193,257,326,8', '258,180,312,314,8', '10,195,93,358,8', '82,252,243,372,8']
#   读取图像并转换成RGB图像
# line[0]:'/Users/cong/yolov4-keras-master/VOCdevkit/VOC2007/JPEGImages/2009_002295.jpg'
image = Image.open(line[0])
# cvtColor函数,,比如说截图。
if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
    image = image
else:
    image = image.convert('RGB')
#   获得图像的高宽与目标高宽
iw, ih = image.size
h, w = input_shape
#   获得预测框, int向下取整, box.split(','): ['80', '217', '320', '273', '10']
box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])
# array([[80, 217, 320, 273, 10],
#       [197, 193, 257, 326, 8],
#       [258, 180, 312, 314, 8],
#      [10, 195, 93, 358, 8],
#      [82, 252, 243, 372, 8]])
#    not random ==================================
if not random:
    scale = min(w / iw, h / ih) # w,h:416,,iw:375, ih:500
    # nw,nh中 ,最多和w,h一样大
    nw = int(iw * scale)
    nh = int(ih * scale)
    dx = (w - nw) // 2
    dy = (h - nh) // 2

    # ---------------------------------#
    #   将图像多余的部分加上灰条
    # ---------------------------------#
    image = image.resize((nw, nh), Image.BICUBIC)
    image.show()
    new_image = Image.new('RGB', (w, h), (128, 128, 128))
    new_image.show()
    new_image.paste(image, (dx, dy))
    new_image.show()
    image_data = np.array(new_image, np.float32)
    # 对真实框进行调整
    box_data = np.zeros((max_boxes, 5))
    if len(box) > 0:
        np.random.shuffle(box)
        box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
        box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
        box[:, 0:2][box[:, 0:2] < 0] = 0
        box[:, 2][box[:, 2] > w] = w
        box[:, 3][box[:, 3] > h] = h
        box_w = box[:, 2] - box[:, 0]
        box_h = box[:, 3] - box[:, 1]
        box = box[np.logical_and(box_w > 1, box_h > 1)]# 从box中取出符合条件的。logical_and逻辑与。
        if len(box) > max_boxes:
            box = box[:max_boxes]
        box_data[:len(box)] = box

# random ===========================================
# 多余部分加上灰度条//翻转//色域扭曲
if random:
    jitter = .3
    hue = .1
    sat = 1.5
    val = 1.5
    new_ar = w / h * rand(1 - jitter, 1 + jitter) / rand(1 - jitter, 1 + jitter)
    scale = rand(.25, 2)
    if new_ar < 1:
        nh = int(scale * h)
        nw = int(nh * new_ar)
    else:
        nw = int(scale * w)
        nh = int(nw / new_ar)
    image = image.resize((nw, nh), Image.BICUBIC)

    # ------------------------------------------#
    #   将图像多余的部分加上灰条
    # ------------------------------------------#
    dx = int(rand(0, w - nw))
    dy = int(rand(0, h - nh))
    new_image = Image.new('RGB', (w, h), (128, 128, 128))
    # new_image.show()
    new_image.paste(image, (dx, dy))
    image = new_image
    # image.show()

    # ------------------------------------------#
    #   翻转图像
    # ------------------------------------------#
    flip = rand() < .5
    if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)  # 左右翻转

    # ------------------------------------------#
    #   色域扭曲 RGB==>HSV==>RGB
    # ------------------------------------------#
    hue = rand(-hue, hue)
    sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat)
    val = rand(1, val) if rand() < .5 else 1 / rand(1, val)
    x = cv2.cvtColor(np.array(image, np.float32) / 255, cv2.COLOR_RGB2HSV)
    x[..., 0] += hue * 360
    x[..., 0][x[..., 0] > 1] -= 1
    x[..., 0][x[..., 0] < 0] += 1
    x[..., 1] *= sat
    x[..., 2] *= val
    x[x[:, :, 0] > 360, 0] = 360
    x[:, :, 1:][x[:, :, 1:] > 1] = 1
    x[x < 0] = 0
    image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) * 255  # numpy array, 0 to 1
    image_uint8 = image_data.astype(np.uint8)
    image = Image.fromarray(image_uint8)
    image.show()
    cv2.imshow('image:', cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR))
    cv2.waitKey(0)
    # ---------------------------------#
    #   对真实框进行调整
    # ---------------------------------#
    box_data = np.zeros((max_boxes, 5))
    if len(box) > 0:
        np.random.shuffle(box)
        box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
        box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
        if flip: box[:, [0, 2]] = w - box[:, [2, 0]]
        box[:, 0:2][box[:, 0:2] < 0] = 0
        box[:, 2][box[:, 2] > w] = w
        box[:, 3][box[:, 3] > h] = h
        box_w = box[:, 2] - box[:, 0]
        box_h = box[:, 3] - box[:, 1]
        box = box[np.logical_and(box_w > 1, box_h > 1)]  # discard invalid box
        if len(box) > max_boxes: box = box[:max_boxes]
        box_data[:len(box)] = box

2. yolov4的datasets生成的具体方法

以下是YoloDatasets类的详细过程,涉及到训练过程中,怎样生成batch数据:

"""
time: 2022/03/28
author: cong
"""

import numpy as np
import math
from PIL import Image
from random import shuffle, sample
import cv2
import keras
import matplotlib
matplotlib.use('Agg')
# Agg 渲染器是非交互式的后端,没有GUI界面,所以不显示图片,它是用来生成图像文件。
# Qt5Agg 是意思是Agg渲染器输出到Qt5绘图面板,它是交互式的后端,拥有在屏幕上展示的能力3。


def sigmoid(x):
    s = 1 / (1 + np.exp(-x))
    return s


#   获得目标类别
def get_classes(classes_path):
    with open(classes_path, encoding='utf-8') as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names, len(class_names)


#   获得先验框
def get_anchors(anchors_path):
    '''loads the anchors from a file'''
    with open(anchors_path, encoding='utf-8') as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    anchors = np.array(anchors).reshape(-1, 2)
    return anchors, len(anchors)


#   将图像转换成RGB图像,防止灰度图在预测时报错。代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image
    else:
        image = image.convert('RGB')
        return image


# 图像归一化
def preprocess_input(image):
    image /= 255.0
    return image


# 1、__init__方法的使用和功能:
#     1、用来构造初始化函数,用来给类的实例进行初始化属性,所以不需要返回值。
#     2、在创建实例时系统自动调用
#     3、自定义类如果不定义的话,默认调用父类的,同理继承也是,子类若无,调用父类,若有,调用自己的.
#Sequence类必须重载三个私有方法__init__、__len__和__getitem__,主要是__getitem__。__init__是构造方法,用于初始化数据的,
# 只要能让样本数据集通过形参顺利传进来就行了。__len__基本上不用改写,用于计算样本数据长度。__getitem__用于生成批量数据,
# 喂给神经网络模型训练用,其输出格式是元组。元组里面有两个元素,每个元素各是一个列表,第一个元素是batch data构成的列表,
# 第二个元素是label构成的列表。在第一个列表中每个元素是一个batch,每个batch里面才是图像张量,所有的batch串成一个列表。第二个列表比较普通,
# 每个元素是个实数,表示标签。这点跟生成器不一样,生成器是在执行时通过yield关键字把每个batch数据喂给模型,一次喂一个batch。__getitem__相当于生成器的作用,
# 如同ImageDataGenerator,但注意编写方法时返回数据不要用yield,而要用return,像一个普通函数一样。至于后台怎么迭代调用这个生成器,
# 这是keras后台程序处理好的事,我们不用担心。我这里程序假定样本数据已经转成pickle的形式,是字典构成的列表,字典的键值分别是feature和label,其中feature是图像张量。
class YoloDatasets(keras.utils.Sequence):
    def __init__(self, annotation_lines, input_shape, anchors, batch_size, num_classes, anchors_mask, mosaic, train):
        self.annotation_lines = annotation_lines
        self.length = len(self.annotation_lines)
        self.input_shape = input_shape
        self.anchors = anchors
        self.batch_size = batch_size
        self.num_classes = num_classes
        self.anchors_mask = anchors_mask
        self.mosaic = mosaic
        self.train = train

    # 覆盖keras.utils.Sequence中的__len__函数, 返回类实例的长度
    def __len__(self):
        return math.ceil(len(self.annotation_lines) / float(self.batch_size))  # ceil:大于结果的整数

    # 覆盖keras.utils.Sequence中的__getitem__函数,这个是返回一个可迭代的对象,如果一个类实现了这个魔法函数,那么这个类就是可迭代对象
    # 在__getitem__中没有结束条件
    def __getitem__(self, index):
        image_data = []
        box_data = []
        for i in range(index * self.batch_size, (index + 1) * self.batch_size):
            i = i % self.length  # voc:17416
            # ---------------------------------------------------#
            #   训练时进行数据的随机增强,验证时不进行数据的随机增强
            # ---------------------------------------------------#
            if self.mosaic:
                if self.rand() < 0.5:
                    lines = sample(self.annotation_lines, 3)  # sample(序列a,n)从序列a中随机抽取n个元素,并以list形式返回。
                    lines.append(self.annotation_lines[i])
                    shuffle(lines)
                    image, box = self.get_random_data_with_Mosaic(lines, self.input_shape)
                else:
                    image, box = self.get_random_data(self.annotation_lines[i], self.input_shape, random=self.train)
            else:
                image, box = self.get_random_data(self.annotation_lines[i], self.input_shape, random=self.train)
            image_data.append(preprocess_input(np.array(image)))
            box_data.append(box)

        image_data = np.array(image_data)
        print(image_data.shape)
        box_data = np.array(box_data)
        print(box_data.shape)
        y_true = self.preprocess_true_boxes(box_data, self.input_shape, self.anchors, self.num_classes)
        return [image_data, *y_true], np.zeros(self.batch_size) # 在列表前加*号,会将列表拆分成一个一个的独立元素,

    def on_epoch_begin(self):
        shuffle(self.annotation_lines)

    def rand(self, a=0, b=1):
        return np.random.rand() * (b - a) + a

    def get_random_data(self, annotation_line, input_shape, max_boxes=100, jitter=.3, hue=.1, sat=1.5, val=1.5,
                        random=True):
        line = annotation_line.split()
        # ------------------------------#
        #   读取图像并转换成RGB图像
        # ------------------------------#
        image = Image.open(line[0])
        image = cvtColor(image)
        # ------------------------------#
        #   获得图像的高宽与目标高宽
        # ------------------------------#
        iw, ih = image.size
        h, w = input_shape
        # ------------------------------#
        #   获得预测框
        # ------------------------------#
        box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])

        if not random:
            scale = min(w / iw, h / ih)
            nw = int(iw * scale)
            nh = int(ih * scale)
            dx = (w - nw) // 2
            dy = (h - nh) // 2

            # ---------------------------------#
            #   将图像多余的部分加上灰条
            # ---------------------------------#
            image = image.resize((nw, nh), Image.BICUBIC)
            new_image = Image.new('RGB', (w, h), (128, 128, 128))
            new_image.paste(image, (dx, dy))
            image_data = np.array(new_image, np.float32)

            # ---------------------------------#
            #   对真实框进行调整
            # ---------------------------------#
            box_data = np.zeros((max_boxes, 5))
            if len(box) > 0:
                np.random.shuffle(box)
                box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
                box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
                box[:, 0:2][box[:, 0:2] < 0] = 0
                box[:, 2][box[:, 2] > w] = w
                box[:, 3][box[:, 3] > h] = h
                box_w = box[:, 2] - box[:, 0]
                box_h = box[:, 3] - box[:, 1]
                box = box[np.logical_and(box_w > 1, box_h > 1)]
                if len(box) > max_boxes: box = box[:max_boxes]
                box_data[:len(box)] = box

            return image_data, box_data

        # ------------------------------------------#
        #   对图像进行缩放并且进行长和宽的扭曲
        # ------------------------------------------#
        new_ar = w / h * self.rand(1 - jitter, 1 + jitter) / self.rand(1 - jitter, 1 + jitter)
        scale = self.rand(.25, 2)
        if new_ar < 1:
            nh = int(scale * h)
            nw = int(nh * new_ar)
        else:
            nw = int(scale * w)
            nh = int(nw / new_ar)
        image = image.resize((nw, nh), Image.BICUBIC)

        # ------------------------------------------#
        #   将图像多余的部分加上灰条
        # ------------------------------------------#
        dx = int(self.rand(0, w - nw))
        dy = int(self.rand(0, h - nh))
        new_image = Image.new('RGB', (w, h), (128, 128, 128))
        new_image.paste(image, (dx, dy))
        image = new_image

        # ------------------------------------------#
        #   翻转图像
        # ------------------------------------------#
        flip = self.rand() < .5
        if flip: image = image.transpose(Image.FLIP_LEFT_RIGHT)

        # ------------------------------------------#
        #   色域扭曲
        # ------------------------------------------#
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
        val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
        x = cv2.cvtColor(np.array(image, np.float32) / 255, cv2.COLOR_RGB2HSV)
        x[..., 0] += hue * 360
        x[..., 0][x[..., 0] > 1] -= 1
        x[..., 0][x[..., 0] < 0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:, :, 0] > 360, 0] = 360
        x[:, :, 1:][x[:, :, 1:] > 1] = 1
        x[x < 0] = 0
        image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) * 255  # numpy array, 0 to 1

        # ---------------------------------#
        #   对真实框进行调整
        # ---------------------------------#
        box_data = np.zeros((max_boxes, 5))
        if len(box) > 0:
            np.random.shuffle(box)
            box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
            box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
            if flip: box[:, [0, 2]] = w - box[:, [2, 0]]
            box[:, 0:2][box[:, 0:2] < 0] = 0
            box[:, 2][box[:, 2] > w] = w
            box[:, 3][box[:, 3] > h] = h
            box_w = box[:, 2] - box[:, 0]
            box_h = box[:, 3] - box[:, 1]
            box = box[np.logical_and(box_w > 1, box_h > 1)]  # discard invalid box
            if len(box) > max_boxes: box = box[:max_boxes]
            box_data[:len(box)] = box

        return image_data, box_data

    def merge_bboxes(self, bboxes, cutx, cuty):
        merge_bbox = []
        for i in range(len(bboxes)):
            for box in bboxes[i]:
                tmp_box = []
                x1, y1, x2, y2 = box[0], box[1], box[2], box[3]

                if i == 0:
                    if y1 > cuty or x1 > cutx:
                        continue
                    if y2 >= cuty and y1 <= cuty:
                        y2 = cuty
                    if x2 >= cutx and x1 <= cutx:
                        x2 = cutx

                if i == 1:
                    if y2 < cuty or x1 > cutx:
                        continue
                    if y2 >= cuty and y1 <= cuty:
                        y1 = cuty
                    if x2 >= cutx and x1 <= cutx:
                        x2 = cutx

                if i == 2:
                    if y2 < cuty or x2 < cutx:
                        continue
                    if y2 >= cuty and y1 <= cuty:
                        y1 = cuty
                    if x2 >= cutx and x1 <= cutx:
                        x1 = cutx

                if i == 3:
                    if y1 > cuty or x2 < cutx:
                        continue
                    if y2 >= cuty and y1 <= cuty:
                        y2 = cuty
                    if x2 >= cutx and x1 <= cutx:
                        x1 = cutx
                tmp_box.append(x1)
                tmp_box.append(y1)
                tmp_box.append(x2)
                tmp_box.append(y2)
                tmp_box.append(box[-1])
                merge_bbox.append(tmp_box)
        return merge_bbox

    def get_random_data_with_Mosaic(self, annotation_line, input_shape, max_boxes=100, hue=.1, sat=1.5, val=1.5):
        h, w = input_shape
        min_offset_x = self.rand(0.25, 0.75)
        min_offset_y = self.rand(0.25, 0.75)

        nws = [int(w * self.rand(0.4, 1)), int(w * self.rand(0.4, 1)), int(w * self.rand(0.4, 1)),
               int(w * self.rand(0.4, 1))]
        nhs = [int(h * self.rand(0.4, 1)), int(h * self.rand(0.4, 1)), int(h * self.rand(0.4, 1)),
               int(h * self.rand(0.4, 1))]

        place_x = [int(w * min_offset_x) - nws[0], int(w * min_offset_x) - nws[1], int(w * min_offset_x),
                   int(w * min_offset_x)]
        place_y = [int(h * min_offset_y) - nhs[0], int(h * min_offset_y), int(h * min_offset_y),
                   int(h * min_offset_y) - nhs[3]]

        image_datas = []
        box_datas = []
        index = 0
        for line in annotation_line:
            # 每一行进行分割
            line_content = line.split()
            # 打开图片
            image = Image.open(line_content[0])
            image = cvtColor(image)

            # 图片的大小
            iw, ih = image.size
            # 保存框的位置
            box = np.array([np.array(list(map(int, box.split(',')))) for box in line_content[1:]])

            # 是否翻转图片
            flip = self.rand() < .5
            if flip and len(box) > 0:
                image = image.transpose(Image.FLIP_LEFT_RIGHT)
                box[:, [0, 2]] = iw - box[:, [2, 0]]

            nw = nws[index]
            nh = nhs[index]
            image = image.resize((nw, nh), Image.BICUBIC)

            # 将图片进行放置,分别对应四张分割图片的位置
            dx = place_x[index]
            dy = place_y[index]
            new_image = Image.new('RGB', (w, h), (128, 128, 128))
            new_image.paste(image, (dx, dy))
            image_data = np.array(new_image)

            index = index + 1
            box_data = []
            # 对box进行重新处理
            if len(box) > 0:
                np.random.shuffle(box)
                box[:, [0, 2]] = box[:, [0, 2]] * nw / iw + dx
                box[:, [1, 3]] = box[:, [1, 3]] * nh / ih + dy
                box[:, 0:2][box[:, 0:2] < 0] = 0
                box[:, 2][box[:, 2] > w] = w
                box[:, 3][box[:, 3] > h] = h
                box_w = box[:, 2] - box[:, 0]
                box_h = box[:, 3] - box[:, 1]
                box = box[np.logical_and(box_w > 1, box_h > 1)]
                box_data = np.zeros((len(box), 5))
                box_data[:len(box)] = box

            image_datas.append(image_data)
            box_datas.append(box_data)

        # 将图片分割,放在一起
        cutx = int(w * min_offset_x)
        cuty = int(h * min_offset_y)

        new_image = np.zeros([h, w, 3])
        new_image[:cuty, :cutx, :] = image_datas[0][:cuty, :cutx, :]
        new_image[cuty:, :cutx, :] = image_datas[1][cuty:, :cutx, :]
        new_image[cuty:, cutx:, :] = image_datas[2][cuty:, cutx:, :]
        new_image[:cuty, cutx:, :] = image_datas[3][:cuty, cutx:, :]

        # 进行色域变换
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand() < .5 else 1 / self.rand(1, sat)
        val = self.rand(1, val) if self.rand() < .5 else 1 / self.rand(1, val)
        x = cv2.cvtColor(np.array(new_image / 255, np.float32), cv2.COLOR_RGB2HSV)
        x[..., 0] += hue * 360
        x[..., 0][x[..., 0] > 1] -= 1
        x[..., 0][x[..., 0] < 0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:, :, 0] > 360, 0] = 360
        x[:, :, 1:][x[:, :, 1:] > 1] = 1
        x[x < 0] = 0
        new_image = cv2.cvtColor(x, cv2.COLOR_HSV2RGB) * 255

        # 对框进行进一步的处理
        new_boxes = self.merge_bboxes(box_datas, cutx, cuty)

        # 将box进行调整
        box_data = np.zeros((max_boxes, 5))
        if len(new_boxes) > 0:
            if len(new_boxes) > max_boxes: new_boxes = new_boxes[:max_boxes]
            box_data[:len(new_boxes)] = new_boxes
        return new_image, box_data

    def preprocess_true_boxes(self, true_boxes, input_shape, anchors, num_classes):
        assert (true_boxes[..., 4] < num_classes).all(), 'class id must be less than num_classes'
        # -----------------------------------------------------------#
        #   获得框的坐标和图片的大小
        # -----------------------------------------------------------#
        true_boxes = np.array(true_boxes, dtype='float32')
        input_shape = np.array(input_shape, dtype='int32')

        # -----------------------------------------------------------#
        #   一共有三个特征层数
        # -----------------------------------------------------------#
        num_layers = len(self.anchors_mask)
        # -----------------------------------------------------------#
        #   m为图片数量,grid_shapes为网格的shape
        # -----------------------------------------------------------#
        m = true_boxes.shape[0]
        grid_shapes = [input_shape // {0: 32, 1: 16, 2: 8}[l] for l in range(num_layers)]
        # -----------------------------------------------------------#
        #   y_true的格式为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
        # -----------------------------------------------------------#
        y_true = [np.zeros((m, grid_shapes[l][0], grid_shapes[l][1], len(self.anchors_mask[l]), 5 + num_classes),
                           dtype='float32') for l in range(num_layers)]

        # -----------------------------------------------------------#
        #   通过计算获得真实框的中心和宽高
        #   中心点(m,n,2) 宽高(m,n,2)
        # -----------------------------------------------------------#
        boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
        boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
        # -----------------------------------------------------------#
        #   将真实框归一化到小数形式
        # -----------------------------------------------------------#
        true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
        true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]

        # -----------------------------------------------------------#
        #   [9,2] -> [1,9,2]
        # -----------------------------------------------------------#
        anchors = np.expand_dims(anchors, 0)
        anchor_maxes = anchors / 2.
        anchor_mins = -anchor_maxes

        # -----------------------------------------------------------#
        #   长宽要大于0才有效
        # -----------------------------------------------------------#
        valid_mask = boxes_wh[..., 0] > 0

        for b in range(m):
            # -----------------------------------------------------------#
            #   对每一张图进行处理
            # -----------------------------------------------------------#
            wh = boxes_wh[b, valid_mask[b]]
            if len(wh) == 0: continue
            # -----------------------------------------------------------#
            #   [n,2] -> [n,1,2]
            # -----------------------------------------------------------#
            wh = np.expand_dims(wh, -2)
            box_maxes = wh / 2.
            box_mins = - box_maxes

            # -----------------------------------------------------------#
            #   计算所有真实框和先验框的交并比
            #   intersect_area  [n,9]
            #   box_area        [n,1]
            #   anchor_area     [1,9]
            #   iou             [n,9]
            # -----------------------------------------------------------#
            intersect_mins = np.maximum(box_mins, anchor_mins)
            intersect_maxes = np.minimum(box_maxes, anchor_maxes)
            intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
            intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]

            box_area = wh[..., 0] * wh[..., 1]
            anchor_area = anchors[..., 0] * anchors[..., 1]

            iou = intersect_area / (box_area + anchor_area - intersect_area)
            # -----------------------------------------------------------#
            #   维度是[n,] 感谢 消尽不死鸟 的提醒
            # -----------------------------------------------------------#
            best_anchor = np.argmax(iou, axis=-1)

            for t, n in enumerate(best_anchor):
                # -----------------------------------------------------------#
                #   找到每个真实框所属的特征层
                # -----------------------------------------------------------#
                for l in range(num_layers):
                    if n in self.anchors_mask[l]:
                        # -----------------------------------------------------------#
                        #   floor用于向下取整,找到真实框所属的特征层对应的x、y轴坐标
                        # -----------------------------------------------------------#
                        i = np.floor(true_boxes[b, t, 0] * grid_shapes[l][1]).astype('int32')
                        j = np.floor(true_boxes[b, t, 1] * grid_shapes[l][0]).astype('int32')
                        # -----------------------------------------------------------#
                        #   k指的的当前这个特征点的第k个先验框
                        # -----------------------------------------------------------#
                        k = self.anchors_mask[l].index(n)
                        # -----------------------------------------------------------#
                        #   c指的是当前这个真实框的种类
                        # -----------------------------------------------------------#
                        c = true_boxes[b, t, 4].astype('int32')
                        # -----------------------------------------------------------#
                        #   y_true的shape为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
                        #   最后的85可以拆分成4+1+80,4代表的是框的中心与宽高、
                        #   1代表的是置信度、80代表的是种类
                        # -----------------------------------------------------------#
                        y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]
                        y_true[l][b, j, i, k, 4] = 1
                        y_true[l][b, j, i, k, 5 + c] = 1

        return y_true


# train_lines
train_annotation_path = '2007_train.txt'
with open(train_annotation_path) as f:
    train_lines = f.readlines()

# input_shape
input_shape = [416, 416]

# anchors
anchors_path = 'model_data/yolo_anchors.txt'
anchors, num_anchors = get_anchors(anchors_path)

# batch_size
Freeze_batch_size = 8
Unfreeze_batch_size = 4
batch_size  = Freeze_batch_size

# num_classes,
classes_path = 'model_data/voc_classes.txt'
class_names, num_classes = get_classes(classes_path)

# anchors_mask
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

# mosaic
mosaic = False

train_dataloader = YoloDatasets(train_lines, input_shape, anchors, batch_size,
                                num_classes, anchors_mask, mosaic=mosaic, train=True)

dataset_len = len(train_dataloader)
print('dataset_len:', dataset_len)
train_lines_len = len(train_lines)
dataset_len_cal = math.ceil(train_lines_len / batch_size)
print('dataset_len_cal:', dataset_len_cal)

# a = train_dataloader[2180]

3. yolov4的损失函数

以下代码使用一张图片计算loss:忽略样本那一块的代码注释感觉有问题,正在研究

"""
time : 2022/03/31
author: cong
"""

import math
import numpy as np
from model import yolo_body
from PIL import Image
import tensorflow as tf
from keras import backend as K
import cv2

def sigmoid(x):
    return 1 / (1 + np.exp(-x))
# ---------------------------------------------------#
#   获得目标类别
#---------------------------------------------------#
def get_classes(classes_path):
    with open(classes_path, encoding='utf-8') as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names, len(class_names)
#---------------------------------------------------#
#   获得先验框
#---------------------------------------------------#
def get_anchors(anchors_path):
    '''loads the anchors from a file'''
    with open(anchors_path, encoding='utf-8') as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    anchors = np.array(anchors).reshape(-1, 2)
    return anchors, len(anchors)
#---------------------------------------------------------#
#   将图像转换成RGB图像,防止灰度图在预测时报错。
#   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
#---------------------------------------------------------#
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image
    else:
        image = image.convert('RGB')
        return image
#---------------------------------------------------#
#   对输入图像进行resize
#---------------------------------------------------#
def resize_image(image, size, letterbox_image):
    # ---------------------------------------------------------------------#
    #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
    #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
    # ---------------------------------------------------------------------#
    iw, ih = image.size
    w, h = size
    if letterbox_image:
        scale = min(w/iw, h/ih)
        nw = int(iw*scale)
        nh = int(ih*scale)
        image = image.resize((nw,nh), Image.BICUBIC)
        new_image = Image.new('RGB', size, (128,128,128))
        # 将image 贴到new_image的图像上,起始位置在((w-nw)//2, (h-nh)//2)
        new_image.paste(image, ((w-nw)//2, (h-nh)//2))
    else:
        new_image = image.resize((w, h), Image.BICUBIC)
    return new_image


def preprocess_input(image):
    image /= 255.0
    return image

# 生成随机数
def rand(a=0, b=1):
    return np.random.rand() * (b - a) + a


#   将预测值的每个特征层调成真实值
def get_anchors_and_decode(feats, anchors, num_classes, input_shape, calc_loss=False):
    num_anchors = len(anchors)
    # 生成grid
    grid_shape = feats.shape[1:3]
    grid_x = np.tile(np.reshape(range(grid_shape[1]), [1, -1, 1, 1]), [grid_shape[0], 1, num_anchors, 1])
    grid_y = np.tile(np.reshape(range(grid_shape[0]), [-1, 1, 1, 1]), [1, grid_shape[1], num_anchors, 1])
    grid = np.concatenate([grid_x, grid_y], axis=3)
    # 生成anchors_reshape
    anchors_reshape = np.reshape(anchors, [1, 1, num_anchors, 2])
    anchors_reshape = np.tile(anchors_reshape, [grid_shape[0], grid_shape[1], 1, 1])
    #
    feats = np.reshape(feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
    out_xy = feats[..., :2]  # 网络预测输出的x、y的偏移量
    out_wh = feats[..., 2:4] # 网络预测输出的w、h的缩放尺度
    xy = sigmoid(out_xy) + grid   # 实际的网格中x、y的坐标
    wh = np.exp(out_wh) * anchors_reshape
    # 在Python中“/”表示浮点数除法,返回浮点结果,也就是结果为浮点数,
    # 而“//”在Python中表示整数除法,返回不大于结果的一个最大的整数,意思就是除法结果向下取整。
    box_xy = xy / grid_shape[::-1]  #对应位置的元素除以13
    box_wh = wh / input_shape[::-1]  #对应位置的元素除以416
    # ------------------------------------------#
    #   获得预测框的置信度
    # ------------------------------------------#
    box_confidence = sigmoid(feats[..., 4:5])
    box_class_probs = sigmoid(feats[..., 5:])
    # ---------------------------------------------------------------------#
    #   在计算loss的时候返回grid, feats, box_xy, box_wh
    #   在预测的时候返回box_xy, box_wh, box_confidence, box_class_probs
    # ---------------------------------------------------------------------#
    if calc_loss == True:
        return grid, feats, box_xy, box_wh
    return box_xy, box_wh, box_confidence, box_class_probs


def box_ciou(b1, b2):
    """
    输入为:
    ----------
    b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
    b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh

    返回为:
    -------
    ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
    """
    # -----------------------------------------------------------#
    #   求出预测框左上角右下角
    #   b1_mins     (batch, feat_w, feat_h, anchor_num, 2)
    #   b1_maxes    (batch, feat_w, feat_h, anchor_num, 2)
    # -----------------------------------------------------------#
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh / 2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half
    # -----------------------------------------------------------#
    #   求出真实框左上角右下角
    #   b2_mins     (batch, feat_w, feat_h, anchor_num, 2)
    #   b2_maxes    (batch, feat_w, feat_h, anchor_num, 2)
    # -----------------------------------------------------------#
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh / 2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    # -----------------------------------------------------------#
    #   求真实框和预测框所有的iou
    #   iou         (batch, feat_w, feat_h, anchor_num)
    # -----------------------------------------------------------#
    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    union_area = b1_area + b2_area - intersect_area
    iou = intersect_area / K.maximum(union_area, K.epsilon())

    # -----------------------------------------------------------#
    #   计算中心的差距
    #   center_distance (batch, feat_w, feat_h, anchor_num)
    # -----------------------------------------------------------#
    center_distance = K.sum(K.square(b1_xy - b2_xy), axis=-1)
    enclose_mins = K.minimum(b1_mins, b2_mins)
    enclose_maxes = K.maximum(b1_maxes, b2_maxes)
    enclose_wh = K.maximum(enclose_maxes - enclose_mins, 0.0)
    # -----------------------------------------------------------#
    #   计算对角线距离
    #   enclose_diagonal (batch, feat_w, feat_h, anchor_num)
    # -----------------------------------------------------------#
    enclose_diagonal = K.sum(K.square(enclose_wh), axis=-1)
    ciou = iou - 1.0 * (center_distance) / K.maximum(enclose_diagonal, K.epsilon())

    v = 4 * K.square(tf.math.atan2(b1_wh[..., 0], K.maximum(b1_wh[..., 1],
                                        K.epsilon())) - tf.math.atan2(b2_wh[..., 0],
                                                                    K.maximum(b2_wh[..., 1],K.epsilon())))  /(math.pi * math.pi)


    alpha = v / K.maximum((1.0 - iou + v), K.epsilon())
    ciou = ciou - alpha * v

    ciou = K.expand_dims(ciou, -1)
    return ciou


# ---------------------------------------------------#
#   平滑标签
# ---------------------------------------------------#
def _smooth_labels(y_true, label_smoothing):
    num_classes = tf.cast(K.shape(y_true)[-1], dtype=K.floatx())
    label_smoothing = K.constant(label_smoothing, dtype=K.floatx())
    return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes


# ---------------------------------------------------#
#   用于计算每个预测框与真实框的iou
# ---------------------------------------------------#
def box_iou(b1, b2):
    # ---------------------------------------------------#
    #   num_anchor,1,4
    #   计算左上角的坐标和右下角的坐标
    # ---------------------------------------------------#
    b1 = K.expand_dims(b1, -2)
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh / 2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half

    # ---------------------------------------------------#
    #   1,n,4
    #   计算左上角和右下角的坐标
    # ---------------------------------------------------#
    b2 = K.expand_dims(b2, 0)
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh / 2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    # ---------------------------------------------------#
    #   计算重合面积
    # ---------------------------------------------------#
    intersect_mins = K.maximum(b1_mins, b2_mins)
    intersect_maxes = K.minimum(b1_maxes, b2_maxes)
    intersect_wh = K.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    iou = intersect_area / (b1_area + b2_area - intersect_area)

    return iou


def yolo_loss(args, input_shape, anchors, anchors_mask, num_classes, ignore_thresh=.5, label_smoothing=0.1,
              print_loss=False):
    num_layers = len(anchors_mask)
    # ---------------------------------------------------------------------------------------------------#
    #   将预测结果和实际ground truth分开,args是[*model_body.output, *y_true]
    #   y_true是一个列表,包含三个特征层,shape分别为:
    #   (m,13,13,3,85)
    #   (m,26,26,3,85)
    #   (m,52,52,3,85)
    #   yolo_outputs是一个列表,包含三个特征层,shape分别为:
    #   (m,13,13,3,85)
    #   (m,26,26,3,85)
    #   (m,52,52,3,85)
    # ---------------------------------------------------------------------------------------------------#
    y_true = args[num_layers:]
    yolo_outputs = args[:num_layers]

    # -----------------------------------------------------------#
    #   得到input_shpae为416,416
    # -----------------------------------------------------------#
    #input_shape = K.cast(input_shape, K.dtype(y_true[0]))
    # input_shape = K.constant(input_shape)
    # -----------------------------------------------------------#
    #   取出每一张图片
    #   m的值就是batch_size
    # -----------------------------------------------------------#
    m = K.shape(yolo_outputs[0])[0]

    loss = 0
    num_pos = 0
    # ---------------------------------------------------------------------------------------------------#
    #   y_true是一个列表,包含三个特征层,shape分别为(m,13,13,3,85),(m,26,26,3,85),(m,52,52,3,85)。
    #   yolo_outputs是一个列表,包含三个特征层,shape分别为(m,13,13,3,85),(m,26,26,3,85),(m,52,52,3,85)。
    # ---------------------------------------------------------------------------------------------------#
    for l in range(num_layers):
        # -----------------------------------------------------------#
        #   以第一个特征层(m,13,13,3,85)为例子
        #   取出该特征层中存在目标的点的位置。(m,13,13,3,1)
        # -----------------------------------------------------------#
        object_mask = y_true[l][..., 4:5]
        # -----------------------------------------------------------#
        #   取出其对应的种类(m,13,13,3,80)
        # -----------------------------------------------------------#
        true_class_probs = y_true[l][..., 5:]
        if label_smoothing:
            true_class_probs = _smooth_labels(true_class_probs, label_smoothing)

        # -----------------------------------------------------------#
        #   将yolo_outputs的特征层输出进行处理、获得四个返回值
        #   其中:
        #   grid        (13,13,1,2) 网格坐标
        #   raw_pred    (m,13,13,3,85) 尚未处理的预测结果
        #   pred_xy     (m,13,13,3,2) 解码后的中心坐标
        #   pred_wh     (m,13,13,3,2) 解码后的宽高坐标
        # -----------------------------------------------------------#
        grid, raw_pred, pred_xy, pred_wh = get_anchors_and_decode(yolo_outputs[l],
                                                                  anchors[anchors_mask[l]], num_classes, input_shape,
                                                                  calc_loss=True)

        # -----------------------------------------------------------#
        #   pred_box是解码后的预测的box的位置
        #   (m,13,13,3,4)
        # -----------------------------------------------------------#
        pred_box = K.concatenate([pred_xy, pred_wh])

        # -----------------------------------------------------------#
        #   找到负样本群组,第一步是创建一个数组,[]
        # TensorArray可以看做是具有动态size功能的Tensor数组。通常都是跟while_loop或map_fn结合使用
        # -----------------------------------------------------------#
        ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
        object_mask_bool = K.cast(object_mask, 'bool')

        # -----------------------------------------------------------#
        #   对每一张图片计算ignore_mask
        # -----------------------------------------------------------#
        def loop_body(b, ignore_mask):
            # -----------------------------------------------------------#
            #   取出n个真实框:n,4
            # -----------------------------------------------------------#
            #  tf.boolean_mask的作用是通过布尔值过滤元素
            true_box = tf.boolean_mask(y_true[l][b, ..., 0:4], object_mask_bool[b, ..., 0])
            # -----------------------------------------------------------#
            #   计算预测框与真实框的iou
            #   pred_box    13,13,3,4 预测框的坐标
            #   true_box    n,4 真实框的坐标
            #   iou         13,13,3,n 预测框和真实框的iou
            # -----------------------------------------------------------#
            iou = box_iou(pred_box[b], true_box)

            # -----------------------------------------------------------#
            #   best_iou    13,13,3 每个特征点与真实框的最大重合程度
            # -----------------------------------------------------------#
            #选出最大的iou
            best_iou = K.max(iou, axis=-1)

            # -----------------------------------------------------------#
            #   判断预测框和真实框的最大iou小于ignore_thresh
            #   则认为该预测框没有与之对应的真实框
            #   该操作的目的是:
            #   忽略预测结果与真实框非常对应特征点,因为这些框已经比较准了
            #   不适合当作负样本,所以忽略掉。
            # -----------------------------------------------------------#
            ignore_mask = ignore_mask.write(b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
            return b + 1, ignore_mask

        # -----------------------------------------------------------#
        #   在这个地方进行一个循环、循环是对每一张图片进行的
        # -----------------------------------------------------------#
        _, ignore_mask = tf.while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask])

        # -----------------------------------------------------------#
        #   ignore_mask用于提取出作为负样本的特征点
        #   (m,13,13,3)
        # -----------------------------------------------------------#
        ignore_mask = ignore_mask.stack()
        #   (m,13,13,3,1)
        ignore_mask = K.expand_dims(ignore_mask, -1)

        # -----------------------------------------------------------#
        #   真实框越大,比重越小,小框的比重更大。
        # -----------------------------------------------------------#
        box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]
        # box_loss_scale:(1,52,52,3,1)
        # -----------------------------------------------------------#
        #   计算Ciou loss
        # -----------------------------------------------------------#
        raw_true_box = y_true[l][..., 0:4]
        ciou = box_ciou(pred_box, raw_true_box) # (1,52,52,3,1)
        ciou_loss = object_mask * box_loss_scale * (1 - ciou) # (1,52,52,3,1)

        # ------------------------------------------------------------------------------#
        #   如果该位置本来有框,那么计算1与置信度的交叉熵
        #   如果该位置本来没有框,那么计算0与置信度的交叉熵
        #   在这其中会忽略一部分样本,这些被忽略的样本满足条件best_iou<ignore_thresh
        #   该操作的目的是:
        #   忽略预测结果与真实框非常对应特征点,因为这些框已经比较准了
        #   不适合当作负样本,所以忽略掉。
        # ------------------------------------------------------------------------------#
        confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                          (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5],
                                                                    from_logits=True) * ignore_mask

        class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[..., 5:], from_logits=True)

        location_loss = K.sum(ciou_loss)
        confidence_loss = K.sum(confidence_loss)
        class_loss = K.sum(class_loss)
        # -----------------------------------------------------------#
        #   计算正样本数量
        # -----------------------------------------------------------#
        num_pos += tf.maximum(K.sum(K.cast(object_mask, tf.float32)), 1)
        loss += location_loss + confidence_loss + class_loss
        # if print_loss:
        #   loss = tf.Print(loss, [loss, location_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')

    loss = loss / num_pos
    return loss











class_path = 'model_data/coco_classes.txt'
model_path = 'model_data/yolo4_weight.h5'
anchors_path = 'model_data/yolo_anchors.txt'
max_boxes = 100   # 最大框的数量
confidence = 0.5  #   只有得分大于置信度的预测框会被保留下来
nms_iou = 0.5     #   非极大抑制所用到的nms_iou大小
#   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
#   在多次测试后,发现关闭letterbox_image直接resize的效果更好
# ---------------------------------------------------------------------#
letterbox_image  = False
input_shape = [416, 416]
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
class_names, num_classes = get_classes(class_path)
anchors_all, num_anchors = get_anchors(anchors_path)

annotation_line = '/Users/cong/yolov4-keras-master/VOCdevkit/VOC2007/JPEGImages/007826.jpg 80,217,320,273,10 197,193,257,326,8 258,180,312,314,8 10,195,93,358,8 82,252,243,372,8\n'
line = annotation_line.split()
image = Image.open(line[0])
print('names:', class_names)
image = cvtColor(image)    # print('image_shape:', np.shape(image))# image_shape: (1080, 1920, 3)
image_data = resize_image(image, input_shape, letterbox_image=False)
#   添加上batch_size维度,并进行归一化,
#   np.expand_dims(a, axis=0)表示在0位置添加数据,
image_data = np.expand_dims(preprocess_input(np.array(image_data, dtype='float32')), 0)
#print(image_data.shape) (1, 416, 416, 3)
# 加载模型
model = yolo_body((None, None, 3), anchors_mask, num_classes)
# model.summary()
model.load_weights(model_path)
model_output = model.predict(image_data)
# print('model:', model)
# 以上为模型推理的结果


###########################################################
# 以下找出该图片的y_true
iw, ih = image.size
h, w = input_shape
#   获得预测框, int向下取整, box.split(','): ['80', '217', '320', '273', '10']
box = np.array([np.array(list(map(int, box.split(',')))) for box in line[1:]])


# anchors_mask
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]

box_data = np.zeros((max_boxes, 5))
if len(box) > 0:
    # np.random.shuffle(box)
    if len(box) > max_boxes:
        box = box[:max_boxes]
    box_data[:len(box)] = box
box_datas_array = np.expand_dims(box_data, axis=0)


assert (box_datas_array[..., 4] < num_classes).all(), 'class id must be less than num_classes'
# -----------------------------------------------------------#
#   获得框的坐标和图片的大小
# -----------------------------------------------------------#
true_boxes = np.array(box_datas_array, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')

# -----------------------------------------------------------#
#   一共有三个特征层数
# -----------------------------------------------------------#
num_layers = len(anchors_mask)
# -----------------------------------------------------------#
#   m为图片数量,grid_shapes为网格的shape
# -----------------------------------------------------------#
m = true_boxes.shape[0]
grid_shapes = [input_shape // {0: 32, 1: 16, 2: 8}[l] for l in range(num_layers)]
# -----------------------------------------------------------#
#   y_true的格式为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
# -----------------------------------------------------------#
y_true = [np.zeros((m, grid_shapes[l][0], grid_shapes[l][1], len(anchors_mask[l]), 5 + num_classes),
                   dtype='float32') for l in range(num_layers)]

# -----------------------------------------------------------#
#   通过计算获得真实框的中心和宽高
#   中心点(m,n,2) 宽高(m,n,2)
# -----------------------------------------------------------#
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2  #  (xmax - xmin)/2 + xmin = (xmin + xmax)/2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
# -----------------------------------------------------------#
#   将真实框归一化到小数形式
# -----------------------------------------------------------#
true_boxes[..., 0:2] = boxes_xy / input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh / input_shape[::-1]

# -----------------------------------------------------------#
#   [9,2] -> [1,9,2]
# -----------------------------------------------------------#
anchors = np.expand_dims(anchors_all, 0)
anchor_maxes = anchors / 2.
anchor_mins = -anchor_maxes

# -----------------------------------------------------------#
#   长宽要大于0才有效
# -----------------------------------------------------------#
valid_mask = boxes_wh[..., 0] > 0  # box_wh:(100,100,2)
# valid_mask:(100)
for b in range(m):
    # -----------------------------------------------------------#
    #   对每一张图进行处理
    # -----------------------------------------------------------#
    wh = boxes_wh[b, valid_mask[b]] # array:(5,2)
    if len(wh) == 0: continue
    # -----------------------------------------------------------#
    #   [n,2] -> [n,1,2]
    # -----------------------------------------------------------#
    wh = np.expand_dims(wh, -2)  #array:(5,1,2)
    box_maxes = wh / 2.
    box_mins = - box_maxes

    # -----------------------------------------------------------#
    #   计算所有真实框和先验框的交并比
    #   intersect_area  [n,9]
    #   box_area        [n,1]
    #   anchor_area     [1,9]
    #   iou             [n,9]
    # -----------------------------------------------------------#
    # 一张图像上 所有目标框与anchor的交并比
    intersect_mins = np.maximum(box_mins, anchor_mins)
    intersect_maxes = np.minimum(box_maxes, anchor_maxes)
    intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]

    box_area = wh[..., 0] * wh[..., 1]
    anchor_area = anchors[..., 0] * anchors[..., 1]

    iou = intersect_area / (box_area + anchor_area - intersect_area) # (n,9)
    # -----------------------------------------------------------#
    #   维度是[n,] 感谢 消尽不死鸟 的提醒
    # -----------------------------------------------------------#
    best_anchor = np.argmax(iou, axis=-1) #(6,5,5,5,6)# 索引为5的anchor在26*26的特征图上同时预测3个物体

    for t, n in enumerate(best_anchor):
        #   找到每个真实框所属的特征层,
        #   n:best_anchor的最大索引,
        #   b:第几张图片
        #   t: 这张图片上的第几个框
        #   l:哪个特征层上的anchor
        for l in range(num_layers):
            if n in anchors_mask[l]:
                #   floor用于向下取整,找到真实框所属的特征层对应的x、y轴顶点坐标#
                i = np.floor(true_boxes[b, t, 0] * grid_shapes[l][1]).astype('int32')
                j = np.floor(true_boxes[b, t, 1] * grid_shapes[l][0]).astype('int32')
                #   k指的的当前这个特征层的第k个先验框
                k = anchors_mask[l].index(n)
                #   c指的是当前这个真实框的种类
                c = true_boxes[b, t, 4].astype('int32')#
                #   y_true的shape为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
                #   最后的85可以拆分成4+1+80,4代表的是框的中心与宽高、
                #   1代表的是置信度、80代表的是种类
                # -----------------------------------------------------------#
                y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]#   J是第几行,所以算的是ymin的长度  i是第几列,要计算x方向的长度
                y_true[l][b, j, i, k, 4] = 1
                y_true[l][b, j, i, k, 5 + c] = 1





#   将预测结果和实际ground truth分开,args是[*model_body.output, *y_true]
args = [*model_output, *y_true]

ignore_thresh=.5,
label_smoothing=0.1,
print_loss=False
num_layers = len(anchors_mask)
y_true = [K.constant(i) for i in args[num_layers:]]
yolo_outputs = args[:num_layers]

# -----------------------------------------------------------#
#   得到input_shpae为416,416
# -----------------------------------------------------------#
# input_shape = K.constant(input_shape)

# -----------------------------------------------------------#
#   取出每一张图片
#   m的值就是batch_size
# -----------------------------------------------------------#
m = K.shape(yolo_outputs[0])[0]

loss = 0
num_pos = 0
# ---------------------------------------------------------------------------------------------------#
#   y_true是一个列表,包含三个特征层,shape分别为(m,13,13,3,85),(m,26,26,3,85),(m,52,52,3,85)。
#   yolo_outputs是一个列表,包含三个特征层,shape分别为(m,13,13,3,85),(m,26,26,3,85),(m,52,52,3,85)。
# ---------------------------------------------------------------------------------------------------#
def loop_body(b, ignore_mask):
    #   取出n个真实框:(n,4)
    #  tf.boolean_mask的作用是通过布尔值过滤元素
    true_box = tf.boolean_mask(y_true[l][b, ..., 0:4], object_mask_bool[b, ..., 0])
    print(true_box.shape)
    # -----------------------------------------------------------#
    #   计算预测框与真实框的iou
    #   pred_box    13,13,3,4 预测框的坐标
    #   true_box    n,4 真实框的坐标
    #   iou         13,13,3,n 预测框和真实框的iou
    # -----------------------------------------------------------#
    iou = box_iou(pred_box[b], true_box)  # (13, 13, 3, ?)
    print(iou.shape)
    # -----------------------------------------------------------#
    #   best_iou    (13,13,3) 每个特征点的3个预测框与真实框的最大重合程度
    # -----------------------------------------------------------#
    best_iou = K.max(iou, axis=-1)
    print(best_iou.shape)

    ignore_mask = ignore_mask.write(b, K.cast(best_iou < ignore_thresh, K.dtype(true_box)))
    print('ignore_mask_shape:', K.cast(best_iou < ignore_thresh, K.dtype(true_box)).shape)

    return b + 1, ignore_mask


for l in range(num_layers-2):

    print('l:', l)

    # -----------------------------------------------------------#
    #   以第一个特征层(m,13,13,3,85)为例子
    #   取出该特征层中存在目标的点的位置。(m,13,13,3,1)
    # -----------------------------------------------------------#
    object_mask = y_true[l][..., 4:5]
    # -----------------------------------------------------------#
    #   取出其对应的种类(m,13,13,3,80)
    # -----------------------------------------------------------#
    true_class_probs = y_true[l][..., 5:]
    if label_smoothing:
        true_class_probs = _smooth_labels(true_class_probs, label_smoothing)
    #标签平滑的意思比如真实值编码为[1, 0, 0], 现在将真实值变为[0.95, 0.025, 0.025]
    #其实就是对训练过程进行惩罚。
    # -----------------------------------------------------------#
    #   将yolo_outputs的特征层输出进行处理、获得四个返回值
    #   其中:
    #   grid        (13,13,1,2) 网格坐标
    #   raw_pred    (m,13,13,3,85) 尚未处理的预测结果
    #   pred_xy     (m,13,13,3,2) 解码后的中心坐标
    #   pred_wh     (m,13,13,3,2) 解码后的宽高坐标
    # -----------------------------------------------------------#
    grid, raw_pred, pred_xy, pred_wh = get_anchors_and_decode(yolo_outputs[l],
                                                              anchors_all[anchors_mask[l]], num_classes, input_shape,
                                                              calc_loss=True)

    # -----------------------------------------------------------#
    #   pred_box是解码后的预测的box的位置
    #   (m,13,13,3,4)
    # -----------------------------------------------------------#
    pred_box = K.concatenate([K.constant(pred_xy), K.constant(pred_wh)])

    # y_true = K.constant(y_true)
    # -----------------------------------------------------------#
    #   找到负样本群组,第一步是创建一个数组,[]
    # dynamic_size指定数组长度可变
    # -----------------------------------------------------------#
    ignore_mask = tf.TensorArray(K.dtype(y_true[0]), size=1, dynamic_size=True)
    object_mask_bool = K.cast(object_mask, 'bool') # (1,52,52,3,1)

    # -----------------------------------------------------------#
    #   对每一张图片计算ignore_mask
    # -----------------------------------------------------------#

    # -----------------------------------------------------------#
    #   在这个地方进行一个循环、循环是对每一张图片进行的
    # -----------------------------------------------------------#
    _, ignore_mask = tf.while_loop(lambda b, *args: b < m, loop_body, [0, ignore_mask])
    #
    # -----------------------------------------------------------#
    #   ignore_mask用于提取出作为负样本的特征点
    #   (m,13,13,3)
    # -----------------------------------------------------------#
    ignore_mask = ignore_mask.stack()  # 将TensorArray中元素叠起来当做一个Tensor输出
    #   (m,13,13,3,1)
    ignore_mask = K.expand_dims(ignore_mask, -1)
    #   (?,13,13,3,1)
    # -----------------------------------------------------------#
    #   真实框越大,比重越小,小框的比重更大。
    # -----------------------------------------------------------#
    box_loss_scale = 2 - y_true[l][..., 2:3] * y_true[l][..., 3:4]  # (1,52,52,3,1)

    # -----------------------------------------------------------#
    #   计算Ciou loss
    # -----------------------------------------------------------#
    raw_true_box = y_true[l][..., 0:4]
    ciou = box_ciou(pred_box, raw_true_box)   #
    ciou_loss = object_mask * box_loss_scale * (1 - ciou)

    # ------------------------------------------------------------------------------#
    #   如果该位置本来有框,那么计算1与置信度的交叉熵
    #   如果该位置本来没有框,那么计算0与置信度的交叉熵
    #   binary_cross_entropy是二分类的交叉熵,实际是多分类softmax_cross_entropy的一种特殊情况,
    #   当多分类中,类别只有两类时,即0或者1,即为二分类,二分类也是一个逻辑回归问题,也可以套用逻辑回归的损失函数。

    # ------------------------------------------------------------------------------#
    confidence_loss = object_mask * K.binary_crossentropy(object_mask, raw_pred[..., 4:5], from_logits=True) + \
                      (1 - object_mask) * K.binary_crossentropy(object_mask, raw_pred[..., 4:5],
                                                                from_logits=True) * ignore_mask

    class_loss = object_mask * K.binary_crossentropy(true_class_probs, raw_pred[..., 5:], from_logits=True)

    location_loss = K.sum(ciou_loss)#沿着指定轴计算张量之和
    confidence_loss = K.sum(confidence_loss)
    class_loss = K.sum(class_loss)
    # -----------------------------------------------------------#
    #   计算正样本数量,没有正样本的时候K.sum(K.cast(object_mask, tf.float32))=0,,num_pos取值为1
    # -----------------------------------------------------------#
    num_pos += tf.maximum(K.sum(K.cast(object_mask, tf.float32)), 1) # 返回最大值

    loss += location_loss + confidence_loss + class_loss
    # if print_loss:
    #   loss = tf.Print(loss, [loss, location_loss, confidence_loss, class_loss, K.sum(ignore_mask)], message='loss: ')

    loss = loss / num_pos


sess = K.get_session()
loss = sess.run(loss)
location_loss = sess.run(location_loss)
object_mask_num = sess.run(K.sum(K.cast(object_mask, tf.float32)))
ignore_mask = sess.run(ignore_mask)
object_mask = sess.run(object_mask)
confidence_loss = sess.run(confidence_loss)
num_pos = sess.run(num_pos)
y_true = sess.run(y_true)
print('loss:', loss)
print('location_loss:', location_loss)
# print('ignore_mask',ignore_mask)

print('object_mask_num:', object_mask_num)
print('num_pos:', num_pos)

4. yolov4的训练设置

import keras.backend as K
from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from keras.optimizers import Adam

from nets.yolo import get_train_model, yolo_body
from utils.callbacks import (ExponentDecayScheduler, LossHistory,
                             WarmUpCosineDecayScheduler)
from utils.dataloader import YoloDatasets
# from yolo_datasets_aug import YoloDatasets
from utils.utils import get_anchors, get_classes

'''
训练自己的目标检测模型一定需要注意以下几点:
1、训练前仔细检查自己的格式是否满足要求,该库要求数据集格式为VOC格式,需要准备好的内容有输入图片和标签
   输入图片为.jpg图片,无需固定大小,传入训练前会自动进行resize。
   灰度图会自动转成RGB图片进行训练,无需自己修改。
   输入图片如果后缀非jpg,需要自己批量转成jpg后再开始训练。

   标签为.xml格式,文件中会有需要检测的目标信息,标签文件和输入图片文件相对应。

2、训练好的权值文件保存在logs文件夹中,每个epoch都会保存一次,如果只是训练了几个step是不会保存的,epoch和step的概念要捋清楚一下。
   在训练过程中,该代码并没有设定只保存最低损失的,因此按默认参数训练完会有100个权值,如果空间不够可以自行删除。
   这个并不是保存越少越好也不是保存越多越好,有人想要都保存、有人想只保存一点,为了满足大多数的需求,还是都保存可选择性高。

3、损失值的大小用于判断是否收敛,比较重要的是有收敛的趋势,即验证集损失不断下降,如果验证集损失基本上不改变的话,模型基本上就收敛了。
   损失值的具体大小并没有什么意义,大和小只在于损失的计算方式,并不是接近于0才好。如果想要让损失好看点,可以直接到对应的损失函数里面除上10000。
   训练过程中的损失值会保存在logs文件夹下的loss_%Y_%m_%d_%H_%M_%S文件夹中

4、调参是一门蛮重要的学问,没有什么参数是一定好的,现有的参数是我测试过可以正常训练的参数,因此我会建议用现有的参数。
   但是参数本身并不是绝对的,比如随着batch的增大学习率也可以增大,效果也会好一些;过深的网络不要用太大的学习率等等。
   这些都是经验上,只能靠各位同学多查询资料和自己试试了。
'''  
if __name__ == "__main__":
    #--------------------------------------------------------#
    #   训练前一定要修改classes_path,使其对应自己的数据集
    #--------------------------------------------------------#
    classes_path    = 'model_data/voc_classes.txt'
    #---------------------------------------------------------------------#
    #   anchors_path代表先验框对应的txt文件,一般不修改。
    #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
    #---------------------------------------------------------------------#
    anchors_path    = 'model_data/yolo_anchors.txt'
    anchors_mask    = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    #----------------------------------------------------------------------------------------------------------------------------#
    #   权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。
    #   模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。
    #   预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好
    #
    #   如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。
    #   同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。
    #   
    #   当model_path = ''的时候不加载整个模型的权值。
    #
    #   此处使用的是整个模型的权重,因此是在train.py进行加载的。
    #   如果想要让模型从主干的预训练权值开始训练,则设置model_path为主干网络的权值,此时仅加载主干。
    #   如果想要让模型从0开始训练,则设置model_path = '',Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。
    #   一般来讲,从0开始训练效果会很差,因为权值太过随机,特征提取效果不明显。
    #
    #   网络一般不从0开始训练,至少会使用主干部分的权值,有些论文提到可以不用预训练,主要原因是他们 数据集较大 且 调参能力优秀。
    #   如果一定要训练网络的主干部分,可以了解imagenet数据集,首先训练分类模型,分类模型的 主干部分 和该模型通用,基于此进行训练。
    #----------------------------------------------------------------------------------------------------------------------------#
    model_path      = 'model_data/yolo4_weight.h5'
    #------------------------------------------------------#
    #   输入的shape大小,一定要是32的倍数
    #------------------------------------------------------#
    input_shape     = [416, 416]
    #------------------------------------------------------#
    #   Yolov4的tricks应用
    #   mosaic 马赛克数据增强 True or False 
    #   实际测试时mosaic数据增强并不稳定,所以默认为False
    #   Cosine_scheduler 余弦退火学习率 True or False
    #   label_smoothing 标签平滑 0.01以下一般 如0.01、0.005
    #------------------------------------------------------#
    mosaic              = False
    Cosine_scheduler    = False
    label_smoothing     = 0

    #----------------------------------------------------#
    #   训练分为两个阶段,分别是冻结阶段和解冻阶段。
    #   显存不足与数据集大小无关,提示显存不足请调小batch_size。
    #   受到BatchNorm层影响,batch_size最小为2,不能为1。
    #----------------------------------------------------#
    #----------------------------------------------------#
    #   冻结阶段训练参数
    #   此时模型的主干被冻结了,特征提取网络不发生改变
    #   占用的显存较小,仅对网络进行微调
    #----------------------------------------------------#
    Init_Epoch          = 0
    Freeze_Epoch        = 50
    Freeze_batch_size   = 8
    Freeze_lr           = 1e-3
    #----------------------------------------------------#
    #   解冻阶段训练参数
    #   此时模型的主干不被冻结了,特征提取网络会发生改变
    #   占用的显存较大,网络所有的参数都会发生改变
    #----------------------------------------------------#
    UnFreeze_Epoch      = 100
    Unfreeze_batch_size = 4
    Unfreeze_lr         = 1e-4
    #------------------------------------------------------#
    #   是否进行冻结训练,默认先冻结主干训练后解冻训练。
    #------------------------------------------------------#
    Freeze_Train        = True
    #------------------------------------------------------#
    #   用于设置是否使用多线程读取数据,1代表关闭多线程
    #   开启后会加快数据读取速度,但是会占用更多内存
    #   keras里开启多线程有些时候速度反而慢了许多
    #   在IO为瓶颈的时候再开启多线程,即GPU运算速度远大于读取图片的速度。
    #------------------------------------------------------#
    num_workers         = 1
    #----------------------------------------------------#
    #   获得图片路径和标签
    #----------------------------------------------------#
    train_annotation_path   = '2007_train.txt'
    val_annotation_path     = '2007_val.txt'

    #----------------------------------------------------#
    #   获取classes和anchor
    #----------------------------------------------------#
    class_names, num_classes = get_classes(classes_path)
    anchors, num_anchors     = get_anchors(anchors_path)

    K.clear_session()
    #------------------------------------------------------#
    #   创建yolo模型
    #------------------------------------------------------#
    model_body  = yolo_body((None, None, 3), anchors_mask, num_classes)
    if model_path != '':
        #------------------------------------------------------#
        #   载入预训练权重
        #------------------------------------------------------#
        print('Load weights {}.'.format(model_path))
        model_body.load_weights(model_path, by_name=True, skip_mismatch=True)

    model = get_train_model(model_body, input_shape, num_classes, anchors, anchors_mask, label_smoothing)
    #-------------------------------------------------------------------------------#
    #   训练参数的设置
    #   logging表示tensorboard的保存地址
    #   checkpoint用于设置权值保存的细节,period用于修改多少epoch保存一次
    #   reduce_lr用于设置学习率下降的方式
    #   early_stopping用于设定早停,val_loss多次不下降自动结束训练,表示模型基本收敛
    #-------------------------------------------------------------------------------#
    logging         = TensorBoard(log_dir = 'logs/')
    checkpoint      = ModelCheckpoint('logs/ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
                            monitor = 'val_loss', save_weights_only = True, save_best_only = False, period = 1)
    if Cosine_scheduler:
        reduce_lr   = WarmUpCosineDecayScheduler(T_max = 5, eta_min = 1e-5, verbose = 1)
    else:
        reduce_lr   = ExponentDecayScheduler(decay_rate = 0.94, verbose = 1)
    early_stopping  = EarlyStopping(monitor='val_loss', min_delta = 0, patience = 10, verbose = 1)
    loss_history    = LossHistory('logs/')

    #---------------------------#
    #   读取数据集对应的txt
    #---------------------------#
    with open(train_annotation_path) as f:
        train_lines = f.readlines()
    with open(val_annotation_path) as f:
        val_lines   = f.readlines()
    num_train   = len(train_lines)
    num_val     = len(val_lines)

    if Freeze_Train:
        freeze_layers = 249
        for i in range(freeze_layers): model_body.layers[i].trainable = False
        print('Freeze the first {} layers of total {} layers.'.format(freeze_layers, len(model_body.layers)))
        
    #------------------------------------------------------#
    #   主干特征提取网络特征通用,冻结训练可以加快训练速度
    #   也可以在训练初期防止权值被破坏。
    #   Init_Epoch为起始世代
    #   Freeze_Epoch为冻结训练的世代
    #   UnFreeze_Epoch总训练世代
    #   提示OOM或者显存不足请调小Batch_size
    #------------------------------------------------------#
    if True:
        batch_size  = Freeze_batch_size
        lr          = Freeze_lr
        start_epoch = Init_Epoch
        end_epoch   = Freeze_Epoch

        epoch_step          = num_train // batch_size
        epoch_step_val      = num_val // batch_size

        if epoch_step == 0 or epoch_step_val == 0:
            raise ValueError('数据集过小,无法进行训练,请扩充数据集。')
        
        model.compile(optimizer=Adam(lr = lr), loss={'yolo_loss': lambda y_true, y_pred: y_pred})

        train_dataloader    = YoloDatasets(train_lines, input_shape, anchors, batch_size, num_classes, anchors_mask, mosaic = mosaic, train = True)
        val_dataloader      = YoloDatasets(val_lines, input_shape, anchors, batch_size, num_classes, anchors_mask, mosaic = False, train = False)

        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
        model.fit_generator(
            generator           = train_dataloader,
            steps_per_epoch     = epoch_step,
            validation_data     = val_dataloader,
            validation_steps    = epoch_step_val,
            epochs              = end_epoch,
            initial_epoch       = start_epoch,
            use_multiprocessing = True if num_workers > 1 else False,
            workers             = num_workers,
            callbacks           = [logging, checkpoint, reduce_lr, early_stopping, loss_history]
        )

    if Freeze_Train:
        for i in range(freeze_layers): model_body.layers[i].trainable = True

    if True:
        batch_size  = Unfreeze_batch_size
        lr          = Unfreeze_lr
        start_epoch = Freeze_Epoch
        end_epoch   = UnFreeze_Epoch

        epoch_step          = num_train // batch_size
        epoch_step_val      = num_val // batch_size

        if epoch_step == 0 or epoch_step_val == 0:
            raise ValueError('数据集过小,无法进行训练,请扩充数据集。')
        
        model.compile(optimizer=Adam(lr = lr), loss={'yolo_loss': lambda y_true, y_pred: y_pred})

        train_dataloader    = YoloDatasets(train_lines, input_shape, anchors, batch_size, num_classes, anchors_mask, mosaic = mosaic, train = True)
        val_dataloader      = YoloDatasets(val_lines, input_shape, anchors, batch_size, num_classes, anchors_mask, mosaic = False, train = False)

        print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
        model.fit_generator(
            generator           = train_dataloader,
            steps_per_epoch     = epoch_step,
            validation_data     = val_dataloader,
            validation_steps    = epoch_step_val,
            epochs              = end_epoch,
            initial_epoch       = start_epoch,
            use_multiprocessing = True if num_workers > 1 else False,
            workers             = num_workers,
            callbacks           = [logging, checkpoint, reduce_lr, early_stopping, loss_history])