1、与消费者有关的重要参数
在讨论重复消费之前,首先介绍一下kafka中几个跟消费有关的配置参数。
- enable.auto.commit 默认值true,表示消费者会周期性自动提交消费的offset
- auto.commit.interval.ms 在enable.auto.commit 为true的情况下,自动提交的间隔,默认值5000ms
- max.poll.records 单次poll,消费者拉取的最大数据条数,默认值500
- max.poll.interval.ms 默认值5分钟,表示若5分钟之内消费者没有消费完上一次poll的消息,那么consumer会主动发起离开g
roup的请求,造成rebalance。
2、消费者自动提交的时机
配置offset自动提交时,consumer什么时候自动提交呢。实际上kafka消费者调用poll方法的时机及自动提交的时机约束如下:
在auto-commit=true时,当上一次poll方法拉取的消息消费完时会进行下一次poll,在经过auto.commit.interval.ms间隔后,下一次调用poll时会提交所有已消费消息的offset。
为了验证consumer自动提交的时机,配置消费者参数如下:
//自动提交
props.put("enable.auto.commit", "true");
//提交间隔30s
props.put("auto.commit.interval.ms", "30000");
//单次拉取20条
props.put("max.poll.records", 20);
配置消费者代码如下:配置获取消费者offset代码如下:
@KafkaListener(topics = "test1", groupId = "group1")
public void fromKafka(ConsumerRecord record) throws InterruptedException {
System.out.println(new Date().toString()+"group111 "+record.toString()); Thread.sleep(1000);
}
//每5s获取一次消费者最新offset
@Scheduled(fixedRate = 5000)
public void schedule() throws TimeoutException {
Map<TopicPartition, OffsetAndMetadata> offset1 = lagOf("group1","localhost:9092"); for (Map.Entry<TopicPartition, OffsetAndMetadata> entry:offset1.entrySet()){
System.out.println(new Date().toString() +"consumer group1:topic-"+entry.getKey().topic()+"partition-"+entry.getKey().partition()+" offset"+entry.getValue().offset());
}
}
public static Map<TopicPartition, OffsetAndMetadata> lagOf(String groupID, String bootstrapServers) throws TimeoutException {
Properties props = new Properties();
props.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
try (AdminClient client = AdminClient.create(props)) {
ListConsumerGroupOffsetsResult result = client.listConsumerGroupOffsets(groupID); try {
Map<TopicPartition, OffsetAndMetadata> consumedOffsets = result.partitionsToOffsetAndMetadata().get(10, TimeUnit.SECONDS);
return consumedOffsets;
} catch (Exception e){
return Collections.emptyMap();
} } }
对topic test1配置了消费者组group1,单次拉取消息数20条,消费者组group1每条消息耗费1s,记录日志打印结果如下:
Mon Feb 10 11:54:39 CST 2020consumer group1:topic-test2partition-0 offset120
Mon Feb 10 11:54:39 CST 2020group111 ConsumerRecord(topic = test1, partition = 0, offset = 125
...
Mon Feb 10 11:55:19 CST 2020consumer group1:topic-test2partition-0 offset160
Mon Feb 10 11:55:19 CST 2020group111 ConsumerRecord(topic = test1, partition = 0, offset = 165 ...
Mon Feb 10 11:55:59 CST 2020consumer group1:topic-test2partition-0 offset200
Mon Feb 10 11:55:59 CST 2020group111 ConsumerRecord(topic = test1, partition = 0, offset = 205
从日志中可以看出,消费组的offset每40s更新一次,因为每次poll会拉取20条消息,每个消息消费1s,在第一次poll之后,下一次poll因为没有达到auto.commit.interval.ms=30s,所以不会提交offset。第二次poll时,已经经过40s,因此这次poll会提交之前两次消费的消息,offset增加40.
3、消费重复的场景
在enable.auto.commit 默认值true情况下,出现重复消费的场景有以下几种:
3.1 consumer 在消费过程中,应用进程被强制kill掉或发生异常退出。
例如在一次poll500条消息后,消费到200条时,进程被强制kill消费到offset未提交,或出现异常退出导致消费到offset未提交。下次重启时,依然会重新拉取500消息,造成之前消费到200条消息重复消费了两次。
解决方案:可在spring中配置异常处理回调类,在发生异常时正确处理未提交的offset
3.2 消费者消费时间过长
max.poll.interval.ms参数定义了两次poll的最大间隔,它的默认值是 5 分钟,表示你的 Consumer 程序如果在 5 分钟之内无法消费完 poll 方法返回的消息,那么 Consumer 会主动发起“离开组”的请求,Coordinator 也会开启新一轮 Rebalance。
配置消费者参数如下:
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "5000");
//单次poll拉取11条消息 props.put("max.poll.records", 11);
//消费代码,单条消息消费30s
@KafkaListener(topics = "test2", groupId = "group22")
public void fromKafka1(ConsumerRecord record) {
System.out.println(new Date().toString() +": group222 "+record.toString());
try {
Thread.sleep(30000);
} catch (InterruptedException e) {
e.printStackTrace(); } }
单次拉取11条消息,每条消息耗时30s,11条消息耗时5分钟30秒,由于max.poll.interval.ms 默认值5分钟,所以消费者无法在5分钟内消费完,consumer会离开组,导致rebalance。在消费完11条消息后,consumer会重新连接broker,再次rebalance,因为上次消费的offset未提交,再次拉取的消息是之前消费过的消息,造成重复消费。
日志如下:
Tue Feb 11 17:29:33 CST 2020: group222 ConsumerRecord(topic = test2, partition = 0, offset = 100, CreateTime = 1581306569687, serialized key size = 3, serialized value size = 4, headers = RecordHeaders(headers = [], isReadOnly = false), key = 100, value = abcd)
Tue Feb 11 17:30:03 CST 2020: group222 ConsumerRecord(topic = test2, partition = 0, offset = 101, CreateTime = 1581306569687, serialized key size = 3, serialized value size = 4, headers = RecordHeaders(headers = [], isReadOnly = false), key = 101, value = abcd)
......
Tue Feb 11 17:34:33 CST 2020: group222 ConsumerRecord(topic = test2, partition = 0, offset = 110, CreateTime = 1581306569688, serialized key size = 3, serialized value size = 4, headers = RecordHeaders(headers = [], isReadOnly = false), key = 110, value = abcd)
2020-02-11 17:35:03.513 WARN 53544 --- [ntainer#0-0-C-1] o.a.k.c.c.internals.ConsumerCoordinator : [Consumer clientId=consumer-2, groupId=group22] Synchronous auto-commit of offsets {test2-0=OffsetAndMetadata{offset=111, metadata=''}} failed: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing the session timeout or by reducing the maximum size of batches returned in poll() with max.poll.records.
2020-02-11 17:35:03.513 INFO 53544 --- [ntainer#0-0-C-1] o.a.k.c.c.internals.ConsumerCoordinator : [Consumer clientId=consumer-2, groupId=group22] Revoking previously assigned partitions [test2-0]
2020-02-11 17:35:03.513 INFO 53544 --- [ntainer#0-0-C-1] o.s.k.l.KafkaMessageListenerContainer : partitions revoked: [test2-0]
2020-02-11 17:35:03.513 INFO 53544 --- [ntainer#0-0-C-1] o.a.k.c.c.internals.AbstractCoordinator : [Consumer clientId=consumer-2, groupId=group22] (Re-)joining group
2020-02-11 17:35:03.521 INFO 53544 --- [ntainer#0-0-C-1] o.a.k.c.c.internals.AbstractCoordinator : [Consumer clientId=consumer-2, groupId=group22] Successfully joined group with generation 57
2020-02-11 17:35:03.522 INFO 53544 --- [ntainer#0-0-C-1] o.a.k.c.c.internals.ConsumerCoordinator : [Consumer clientId=consumer-2, groupId=group22] Setting newly assigned partitions [test2-0]
2020-02-11 17:35:03.627 INFO 53544 --- [ntainer#0-0-C-1] o.s.k.l.KafkaMessageListenerContainer : partitions assigned: [test2-0]
Tue Feb 11 17:35:03 CST 2020: group222 ConsumerRecord(topic = test2, partition = 0, offset = 100, CreateTime = 1581306569687, serialized key size = 3, serialized value size = 4, headers = RecordHeaders(headers = [], isReadOnly = false), key = 100, value = abcd)
可以看到在消费完第11条消息后,提交offset失败,因为消费时间太长,已经rebalance。之后,重新分配partition后,再次poll依然从之前消费过的消息处开始消费,造成重复消费。
解决方案:
1、提高消费能力,提高单条消息的处理速度;根据实际场景可讲max.poll.interval.ms值设置大一点,避免不必要的rebalance;可适当减小max.poll.records的值,默认值是500,可根据实际消息速率适当调小。这种方法可解决因消费时间过长导致的重复消费问题,但无法避免极端情况
2、可生成消息时,可加入唯一标识符如消息id。在消费端,保存最近的1000条消息(可配置)id存入到redis或mysql中,配置max.poll.records的值小于1000,消费的消息时通过前置表去重。
参考文档:
2、https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/ch04.html
3、 Kafka中位移提交那些事儿