1.IKAnalyzer
IK Analyzer是一个开源的,基于Java语言开发的轻量级的中文分词工具包。从2006.12推出1.0版本开始,IK Analyzer已经推出了多个版本,当前最新版本为2012 u6,最初基于Luence,从3.0开始成为面向Java的公用分词组件,独立于Luence,下载地址为:http://code.google.com/p/ik-analyzer/。IK支持细粒度和智能分词两种切分模式,支持英文字母、数字、中文词汇等分词处理,兼容韩文、日文字符。可以支持用户自定义的词典,通过配置IKAnalyzer.cfg.xml文件来实现,可以配置自定义的扩展词典和停用词典。词典需要采用UTF-8无BOM格式编码,并且每个词语占一行。配置文件如下所示:
1. <properties>
2. <comment>IK Analyzer 扩展配置</comment>
3. <!--用户可以在这里配置自己的扩展字典-->
4. <entry key="ext_dict">ext.dic;</entry>
5.
6. <!--用户可以在这里配置自己的扩展停止词字典-->
7. <entry key="ext_stopwords">stopword.dic;chinese_stopword.dic</entry>
8.
9. </properties>
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典-->
<entry key="ext_dict">ext.dic;</entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords">stopword.dic;chinese_stopword.dic</entry>
</properties>
IK部署很简单,只需要把IKAnalyzer2012_u6.jar部署于项目的lib中,同时将IKAnalyzer.cfg.xml文件以及词典文件置于src中,即可通过API的方式开发调用。
示例代码:
1. /**
2. * IK分词功能实现
3. * @return
4. */
5. public
6. new StringBuffer("");
7. try{
8. new IKSegmenter(new StringReader(srcString), true);
9. null;
10. while((lex=ik.next())!=null){
11. // System.out.print(lex.getLexemeText()+" ");
12. " ");
13. }
14. catch(Exception e){
15. logger.error(e.getMessage());
16. }
17. return
18. }
/**
* IK分词功能实现
* @return
*/
public String spiltWords(String srcString){
StringBuffer wordsBuffer = new StringBuffer("");
try{
IKSegmenter ik=new IKSegmenter(new StringReader(srcString), true);
Lexeme lex=null;
while((lex=ik.next())!=null){
// System.out.print(lex.getLexemeText()+" ");
wordsBuffer.append(lex.getLexemeText()).append(" ");
}
}catch(Exception e){
logger.error(e.getMessage());
}
return wordsBuffer.toString();
}
IK简单、易于扩展,分词结果较好并且采用Java编写,因为我平时的项目以Java居多,所以是我平时处理分词的首选工具。
2.中科院ICTCLAS
ICTCLAS是由中科院计算所历经数年开发的分词工具,采用C++编写。最新版本命名为ICTCLAS2013,又名为NLPIR汉语分词系统,官网为:http://ictclas.nlpir.org/。主要功能包括中文分词、词性标注、命名实体识别、用户词典功能,同时支持GBK编码、UTF8编码、BIG5编码,新增微博分词、新词发现与关键词提取。可以可视化界面操作和API方式调用。
3.FudanNLP
FudanNLP主要是为中文自然语言处理而开发的工具包,也包含为实现这些任务的机器学习算法和数据集。FudanNLP及其包含数据集使用LGPL3.0许可证。
主要功能包括:
信息检索:文本分类,新闻聚类。
中文处理:中文分词,词性标注,实体名识别,关键词抽取,依存句法分析,时间短语识别。
结构化学习:在线学习,层次分类,聚类,精确推理。
工具采用Java编写,提供了API的访问调用方式。最新版本为FudanNLP-1.6.1,下载地址为:http://code.google.com/p/fudannlp/。
下载安装包后解压后,内容如下图所示:
在使用时将fudannlp.jar以及lib中的jar部署于项目中的lib里面。models文件夹中存放的模型文件,主要用于分词、词性标注和命名实体识别以及分词所需的词典;文件夹example中主要是使用的示例代码,可以帮助快速入门和使用;java-docs是API帮助文档;src中存放着源码;PDF文档中有着比较详细的介绍和自然语言处理基础知识的讲解。
初始运行程序时初始化时间有点长,并且加载模型时占用内存较大。在进行语法分析时感觉分析的结果不是很准确。
4.The Stanford Natural LanguageProcessing Group
Stanford NLP Group是斯坦福大学自然语言处理的团队,开发了多个NLP工具,官网网址为:http://nlp.stanford.edu/software/index.shtml。其开发的工具包括以下内容:
4.1 Stanford CoreNLP
采用Java编写的面向英文的处理工具,下载网址为:http://nlp.stanford.edu/software/corenlp.shtml。主要功能包括分词、词性标注、命名实体识别、语法分析等。
我曾经采用它进行英语单词的词性还原,具体应用详见文章《采用Stanford CoreNLP实现英文单词词形还原》。
4.2 Stanford Word Segmenter
采用CRF(条件随机场)算法进行分词,也是基于Java开发的,同时可以支持中文和Arabic,官方要求Java版本1.6以上,推荐内存至少1G。下载地址为http://nlp.stanford.edu/software/segmenter.shtml。
简单的示例程序:
1. //设置分词器属性。
2. new
3. //字典文件地址,可以用绝对路径,如d:/data
4. "sighanCorporaDict", "data");
5. //字典压缩包地址,可以用绝对路径
6. "serDictionary","data/dict-chris6.ser.gz");
7. //输入文字的编码;
8. "inputEncoding", "UTF-8");
9. "sighanPostProcessing", "true");
10. //初始化分词器,
11. new
12. //从持久化文件中加载分词器设置;
13. "data/ctb.gz", props);
14. // flags must be re-set after data is loaded
15. classifier.flags.setProperties(props);
16. //分词
17. "语句内容");
//设置分词器属性。
Properties props = new Properties();
//字典文件地址,可以用绝对路径,如d:/data
props.setProperty("sighanCorporaDict", "data");
//字典压缩包地址,可以用绝对路径
props.setProperty("serDictionary","data/dict-chris6.ser.gz");
//输入文字的编码;
props.setProperty("inputEncoding", "UTF-8");
props.setProperty("sighanPostProcessing", "true");
//初始化分词器,
CRFClassifier classifier = new CRFClassifier(props);
//从持久化文件中加载分词器设置;
classifier.loadClassifierNoExceptions("data/ctb.gz", props);
// flags must be re-set after data is loaded
classifier.flags.setProperties(props);
//分词
List words = classifier.segmentString("语句内容");
//设置分词器属性。
Properties props = new Properties();
//字典文件地址,可以用绝对路径,如d:/data
props.setProperty("sighanCorporaDict", "data");
//字典压缩包地址,可以用绝对路径
props.setProperty("serDictionary","data/dict-chris6.ser.gz");
//输入文字的编码;
props.setProperty("inputEncoding", "UTF-8");
props.setProperty("sighanPostProcessing", "true");
//初始化分词器,
CRFClassifier classifier = new CRFClassifier(props);
//从持久化文件中加载分词器设置;
classifier.loadClassifierNoExceptions("data/ctb.gz", props);
// flags must be re-set after data is loaded
classifier.flags.setProperties(props);
//分词
List words = classifier.segmentString("语句内容");
4.3 Stanford POS Tagger
采用Java编写的面向英文、中文、法语、阿拉伯语、德语的命名实体识别工具,下载地址为:http://nlp.stanford.edu/software/tagger.shtml。还没有接触过,需要以后学习研究。
4.4 Stanford Named Entity Recognizer
采用条件随机场模型的命名实体工具,下载地址为:http://nlp.stanford.edu/software/CRF-NER.shtml。还没有接触过,需要以后学习研究。
4.5 Stanford Parser
进行语法分析的工具,支持英文、中文、阿拉伯文和法语。下载地址为:http://nlp.stanford.edu/software/lex-parser.shtml。具体的使用介绍见《采用Stanford Parser进行中文语法解析》。
4.6 Stanford Classifier
采用Java编写的分类器,下载地址为:http://nlp.stanford.edu/software/classifier.shtml。还没有接触过,需要以后学习研究。
最后附上关于中文分词器性能比较的一篇文章(2014.05.27更新)
4.Apache OpenNLP--2014.12.29更新
OpenNLP是Apache下的一个自然语言处理工具包,提供了分词、分句、词性标注、命名实体识别等 功能。官网地址为:http://opennlp.apache.org/ 官方提供了文档说明以及API,有命令行调用和程序代码使用两种方式。http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html里面介绍了每种任务已经使用方式,介绍很详细。同时提供了最大熵的处理工具opennlp.maxent,可以实现根据自己的需要来训练最大熵模型,并且借助模型进行语料的最大熵分类,个人感觉使用还是很方便的。