逻辑回归
Logistic回归一种二分类算法,它利用的是Sigmoid函数阈值在[0,1]这个特性。Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。其实,Logistic本质上是一个基于条件概率的判别模型(Discriminative Model)。
梯度上升算法
求函数的极值:
"""
函数说明:梯度上升算法测试函数
求函数f(x) = -x^2 + 4x的极大值
Parameters:
无
Returns:
无
"""
def Gradient_Ascent_test():
def f_prime(x_old): #f(x)的导数
return -2 * x_old + 4
x_old = -1 #初始值,给一个小于x_new的值
x_new = 0 #梯度上升算法初始值,即从(0,0)开始
alpha = 0.01 #步长,也就是学习速率,控制更新的幅度
presision = 0.00000001 #精度,也就是更新阈值
while abs(x_new - x_old) > presision:
x_old = x_new
x_new = x_old + alpha * f_prime(x_old) #上面提到的公式
print(x_new) #打印最终求解的极值近似值
if __name__ == '__main__':
Gradient_Ascent_test()
运行结果:
1.999999515279857
通过运行结果可以了解到,同过python所求出来的解十分的接近2了。
案例
数据集下载:https://github.com/Jack-Cherish/Machine-Learning/blob/master/Logistic/testSet.txt
-0.017612 14.053064 0
-1.395634 4.662541 1
-0.752157 6.538620 0
-1.322371 7.152853 0
0.423363 11.054677 0
0.406704 7.067335 1
0.667394 12.741452 0
-2.460150 6.866805 1
0.569411 9.548755 0
-0.026632 10.427743 0
这个数据有两维特征,因此可以将数据在一个二维平面上展示出来。我们可以将第一列数据(X1)看作x轴上的值,第二列数据(X2)看作y轴上的值。而最后一列数据即为分类标签。根据标签的不同,对这些点进行分类。
import matplotlib.pyplot as plt
import numpy as np
"""
函数说明:加载数据
Parameters:
无
Returns:
dataMat - 数据列表
labelMat - 标签列表
"""
def loadDataSet():
dataMat = [] #创建数据列表
labelMat = [] #创建标签列表
fr = open('testSet.txt') #打开文件
for line in fr.readlines(): #逐行读取
lineArr = line.strip().split() #去回车,放入列表
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据
labelMat.append(int(lineArr[2])) #添加标签
fr.close() #关闭文件
return dataMat, labelMat #返回
"""
函数说明:绘制数据集
Parameters:
无
Returns:
无
"""
def plotDataSet():
dataMat, labelMat = loadDataSet() #加载数据集
dataArr = np.array(dataMat) #转换成numpy的array数组
n = np.shape(dataMat)[0] #数据个数
xcord1 = []; ycord1 = [] #正样本
xcord2 = []; ycord2 = [] #负样本
for i in range(n): #根据数据集标签进行分类
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) #1为正样本
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) #0为负样本
fig = plt.figure()
ax = fig.add_subplot(111) #添加subplot
ax.scatter(xcord1, ycord1, s = 20, c = 'red', marker = 's',alpha=.5)#绘制正样本
ax.scatter(xcord2, ycord2, s = 20, c = 'green',alpha=.5) #绘制负样本
plt.title('DataSet') #绘制title
plt.xlabel('x'); plt.ylabel('y') #绘制label
plt.show() #显示
if __name__ == '__main__':
plotDataSet()
运行结果:
从上图可以看出数据的分布情况。假设Sigmoid函数的输入记为z,那么z=w0x0 + w1x1 + w2x2,即可将数据分割开。其中,x0为全是1的向量,x1为数据集的第一列数据,x2为数据集的第二列数据。另z=0,则0=w0 + w1x1 + w2x2。横坐标为x1,纵坐标为x2。这个方程未知的参数为w0,w1,w2,也就是我们需要求的回归系数(最优参数)。
import numpy as np
"""
函数说明:加载数据
Parameters:
无
Returns:
dataMat - 数据列表
labelMat - 标签列表
"""
def loadDataSet():
dataMat = [] #创建数据列表
labelMat = [] #创建标签列表
fr = open('testSet.txt') #打开文件
for line in fr.readlines(): #逐行读取
lineArr = line.strip().split() #去回车,放入列表
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #添加数据
labelMat.append(int(lineArr[2])) #添加标签
fr.close() #关闭文件
return dataMat, labelMat #返回
"""
函数说明:sigmoid函数
Parameters:
inX - 数据
Returns:
sigmoid函数
"""
def sigmoid(inX):
return 1.0 / (1 + np.exp(-inX))
"""
函数说明:梯度上升算法
Parameters:
dataMatIn - 数据集
classLabels - 数据标签
Returns:
weights.getA() - 求得的权重数组(最优参数)
"""
def gradAscent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn) #转换成numpy的mat
labelMat = np.mat(classLabels).transpose() #转换成numpy的mat,并进行转置
m, n = np.shape(dataMatrix) #返回dataMatrix的大小。m为行数,n为列数。
alpha = 0.001 #移动步长,也就是学习速率,控制更新的幅度。
maxCycles = 500 #最大迭代次数
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix * weights) #梯度上升矢量化公式
error = labelMat - h
weights = weights + alpha * dataMatrix.transpose() * error
return weights.getA() #将矩阵转换为数组,返回权重数组
if __name__ == '__main__':
dataMat, labelMat = loadDataSet()
print(gradAscent(dataMat, labelMat))
运行结果:
[[ 4.12414349]
[ 0.48007329]
[-0.6168482 ]]
求解出回归系数[w0,w1,w2]