文章目录
- (一)应用场景
- (二)技术展望
(一)应用场景
1. 与人脸识别相结合
现在人脸识别技术比较成熟,但是人脸识别技术有一个明显的要求,就是必须看到相对清晰的人脸照,如果是一个背面照,完全没有人脸的情况下,人脸识别技术是失效的。但 ReID 技术和人脸的技术可以做一个补充,当能看到人脸的时候用人脸的技术去识别,当看不到人脸的时候用 ReID 技术去识别,可以延长行人在摄像头连续跟踪的时空延续性。
2. 智能安防
它的应用场景是这样子的,比如我已经知道某个嫌疑犯的照片,警察想知道嫌疑犯在监控视频里的照片,但监控视频是 24 小时不间断在监控,所以数据量非常大,监控摄像头非常多,比如有几百个、几十个摄像头,但人来对摄像头每秒每秒去看的话非常费时,这时可以用 ReID 技术。
ReID 根据嫌疑犯照片,去监控视频库里去收集嫌疑犯出现的视频段。这样可以把嫌疑犯在各个摄像头的轨迹串连起来,这个轨迹一旦串连起来之后,相信对警察的破案刑侦有非常大的帮助。
3. 智能寻人系统
比如大型公共场所,像迪斯尼乐园,爸爸妈妈带着小朋友去玩,小朋友在玩的过程中不小心与爸爸妈妈走散了,现在走散时是在广播里播一下“某某小朋友,你爸爸妈妈在找你”,但小朋友也不是非常懂,父母非常着急。
这时可以用 ReID 技术,爸爸妈妈提供一张小朋友拍的照片,把这个照片输入到 ReID 系统里,实时的在所有监控摄像头寻找这个小朋友的照片,ReID 有这个技术能力,它可以很快的找到跟爸爸妈妈提供的照片最相似的人,相信对立马找到这个小朋友有非常大的帮助。这种大型公共场所还有更多,比如超市、火车站、展览馆,人流密度比较大的公共场所。智能寻人系统也是比较具象的 ReID 应用场景。
4. 智能商业-大型商场
想通过了解用户在商场里的行为轨迹,通过行为轨迹了解用户的兴趣,以便优化用户体验。ReID 可以根据行人外观的照片,实时动态跟踪用户轨迹,把轨迹转化成管理员能够理解的信息,以帮助大家去优化商业体验。
这个过程中会涉及到用户隐私之类的,但从 ReID 的角度来讲,我们比较提倡数据源来自于哪个商场,那就应用到哪个商场。因为 ReID 的数据很复杂,数据的迁移能力是比较弱的,这个上场的数据不见得在另外一个商场里能用,所以我们提倡 ReID 的数据应用在本商场。
5. 智能商业-无人超市
无人超市也有类似的需求,无人超市不只是体验优化,它还要了解用户的购物行为,因为如果只基于人脸来做,很多时候是拍不到客户的正面,ReID 这个技术在无人超市的场景下有非常大的应用帮助。
6. 相册聚类
现在拍照时,可以把相同人的照片聚在一起,方便大家去管理,这也是一个具象的应用场景。
7. 家庭机器人
家庭机器人通过衣着或者姿态去认知主人,做一些智能跟随等动作,因为家庭机器人很难实时看到主人的人脸,用人脸识别的技术去做跟踪的话,我觉得还是有一些局限性的。但是整个人体的照片比较容易获得,比如家里有一个小的机器人,它能够看到主人的照片,无论是上半年还是下半年,ReID 可以基于背影或者局部服饰去识别。
(二)技术展望
第一个,ReID 的数据比较难获取,如果用应用无监督学习去提高 ReID 效果,可以降低数据采集的依赖性,这也是一个研究方向。右边可以看到,GAN生成数据来帮助 ReID 数据增强,现在也是一个很大的分支,但这只是应用无监督学习的一个方向。
第二个,基于视频的 ReID。因为刚才几个数据集是基于对视频切好的单个图片而已,但实际应用场景中还存在着视频的连续帧,连续帧可以获取更多信息,跟实际应用更贴近,很多研究者也在进行基于视频 ReID 的技术。
第三个,跨模态的 ReID。刚才讲到白天和黑夜的问题,黑夜时可以用红外的摄像头拍出来的跟白色采样摄像头做匹配。
第四个,跨场景的迁移学习。就是在一个场景比如 market1501 上学到的 ReID,怎样在 Duke数据集上提高效果。
第五个,应用系统设计。相当于设计一套系统让 ReID 这个技术实际应用到行人检索等技术上去。