浮点数是用机器上浮点数的本机双精度(64 bit)表示的。提供大约17位的精度和范围从-308到308的指数。和C语言里面的double类型相同。Python不支持32bit的单精度浮点数。如果程序需要精确控制区间和数字精度,可以考虑使用numpy扩展库。
Python 3.X对于浮点数默认的是提供17位数字的精度。
关于单精度和双精度的通俗解释:
单精度型和双精度型,其类型说明符为float 单精度说明符,double 双精度说明符。在Turbo C中单精度型占4个字节(32位)内存空间,其数值范围为3.4E-38~3.4E+38,只能提供七位有效数字。双精度型占8 个字节(64位)内存空间,其数值范围为1.7E-308~1.7E+308,可提供16位有效数字。
一.将精度高的浮点数转换成精度低的浮点数。
1.round()内置方法
print(round(2.605, 2)) # 2.6
print(round(2.615, 2)) # 2.62
print(round(2.625, 2)) # 2.62
round()如果只有一个数作为参数,不指定位数的时候,返回的是一个整数,而且是最靠近的整数(这点上类似四舍五入)。但是当出现.5的时候,两边的距离都一样,round()取靠近的偶数,这就是为什么round(2.5) = 2。当指定取舍的小数点位数的时候,一般情况也是使用四舍五入的规则,但是碰到.5的这样情况,如果要取舍的位数前的小树是奇数,则直接舍弃,如果偶数这向上取舍。
2. 使用格式化
效果和round()是一样的。
a = ("%.2f" % 2.635)
二.要求超过17位的精度分析
python默认的是17位小数的精度,但是这里有一个问题,就是当我们的计算需要使用更高的精度(超过17位小数)的时候该怎么做呢?
1. 使用格式化(不推荐)
a = "%.30f" % (1/3)
可以显示,但是不准确,后面的数字往往没有意义。
2. 高精度使用decimal模块,配合getcontext
from decimal import *
print(getcontext())
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, capitals=1, clamp=0, flags=[], traps=[InvalidOperation, DivisionByZero, Overflow])
getcontext().prec = 50
b = Decimal(1)/Decimal(3)
print(b)
Decimal('0.33333333333333333333333333333333333333333333333333')
c = Decimal(1)/Decimal(17)
print(c)
Decimal('0.058823529411764705882352941176470588235294117647059')
print(float(c))
默认的context的精度是28位,可以设置为50位甚至更高,都可以。这样在分析复杂的浮点数的时候,可以有更高的自己可以控制的精度。其实可以留意下context里面的这rounding=ROUND_HALF_EVEN 参数。ROUND_HALF_EVEN, 当half的时候,靠近even.
三.关于小数和取整
既然说到小数,就必然要说到整数。一般取整会用到这些函数:
1. round()
这个不说了,前面已经讲过了。一定要注意它不是简单的四舍五入,而是ROUND_HALF_EVEN的策略。
2. math模块的ceil(x)
取大于或者等于x的最小整数。
3. math模块的floor(x)
去小于或者等于x的最大整数。
from math import ceil, floor
round(2.5)
2
ceil(2.5)
3
floor(2.5)
2
round(2.3)
2
ceil(2.3)
3
floor(2.3)
2