▲conda命令: conda命令详解

1.创建环境

例子:

#创建python3.6版本的环境test:
 conda create -n test python=3.6
#激活该环境test:
conda activate test
#展示该环境的包:
pip list

2.确定cuda和gpu

▲电脑查询GPU型号:
任务管理器-性能
or
设备管理器-显示适配器

▲电脑查询GPU型号对应的cuda:
命令行输入:

nvidia-smi

or
NVIDIA控制面板-系统信息-组件-3D设置-NVCUDA64.DLL 产品名称(相关链接

(有时候有错误,可以去更新一下驱动,具体可见土堆视频的p3

3.在pytorch官网安装pytorch

Stable:稳定版

cuda的型号需要查看自己的gpu确定

复制命令行进行安装

pytorch官网提供的CUDA版本没有怎么班_pytorch


安装很慢的话可以下载本地包,具体可见土堆视频的p3

4.检查是否安装成功

命令行

#命令行,进入python环境
python
#进入Python环境后,import torch,没有报错即为成功
import torch
#判断是否可以用gpu
torch.cuda.is_available()  #返回True,即可以用gpu

5.pycharm中创建一个项目

pytorch官网提供的CUDA版本没有怎么班_Image_02


pytorch官网提供的CUDA版本没有怎么班_深度学习_03


pytorch官网提供的CUDA版本没有怎么班_深度学习_04

6.配置jupyter nootbook

下载anaconda之后默认安装jupyter,但默认的环境为base
要切换环境
命令行:

# 激活test环境
conda activate test
# 在当前环境安装jupyter需要的包(还是库?)
conda install nb_conda
# 打开jupyter
jupyter notebook

创建一个新的文件

pytorch官网提供的CUDA版本没有怎么班_深度学习_05


pytorch官网提供的CUDA版本没有怎么班_命令行_06

7.两个函数 dir() / help()

pytorch官网提供的CUDA版本没有怎么班_命令行_07


在pycharm的console中,

pytorch官网提供的CUDA版本没有怎么班_python_08


演示一下如何探索torch.cuda.is_available()函数

命令行输入

pytorch官网提供的CUDA版本没有怎么班_pytorch_09

8.Dataset

from torch.utils.data import Dataset

▲Dataset文档:
查看文档两种方法:
(1)在pycharm中按住ctrl键,点击相应的类或包
(2)在jupyter中输入Dataset??,得到Dataset的文档

读一下,文档说要重写两个函数__getitem____len__

Init signature: Dataset(*args, **kwds)
Source:        
class Dataset(Generic[T_co]):
    r"""An abstract class representing a :class:`Dataset`.

    All datasets that represent a map from keys to data samples should subclass
    it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
    data sample for a given key. Subclasses could also optionally overwrite
    :meth:`__len__`, which is expected to return the size of the dataset by many
    :class:`~torch.utils.data.Sampler` implementations and the default options
    of :class:`~torch.utils.data.DataLoader`.

    .. note::
      :class:`~torch.utils.data.DataLoader` by default constructs a index
      sampler that yields integral indices.  To make it work with a map-style
      dataset with non-integral indices/keys, a custom sampler must be provided.
    """
    functions: Dict[str, Callable] = {}

    def __getitem__(self, index) -> T_co:
        raise NotImplementedError

    def __add__(self, other: 'Dataset[T_co]') -> 'ConcatDataset[T_co]':
        return ConcatDataset([self, other])

    # No `def __len__(self)` default?
    # See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
    # in pytorch/torch/utils/data/sampler.py

    def __getattr__(self, attribute_name):
        if attribute_name in Dataset.functions:
            function = functools.partial(Dataset.functions[attribute_name], self)
            return function
        else:
            raise AttributeError

    @classmethod
    def register_function(cls, function_name, function):
        cls.functions[function_name] = function

    @classmethod
    def register_datapipe_as_function(cls, function_name, cls_to_register, enable_df_api_tracing=False):
        if function_name in cls.functions:
            raise Exception("Unable to add DataPipe function name {} as it is already taken".format(function_name))

        def class_function(cls, enable_df_api_tracing, source_dp, *args, **kwargs):
            result_pipe = cls(source_dp, *args, **kwargs)
            if isinstance(result_pipe, Dataset):
                if enable_df_api_tracing or isinstance(source_dp, DFIterDataPipe):
                    if function_name not in UNTRACABLE_DATAFRAME_PIPES:
                        result_pipe = result_pipe.trace_as_dataframe()

            return result_pipe

        function = functools.partial(class_function, cls_to_register, enable_df_api_tracing)
        cls.functions[function_name] = function
File:           c:\anaconda3\envs\test\lib\site-packages\torch\utils\data\dataset.py
Type:           GenericMeta

▲在控制台可以进行测试

pytorch官网提供的CUDA版本没有怎么班_命令行_10


这里学到一个技巧,在写代码的过程中,可以通过控制台来不断调试!!!直接复制过来就行。▲DataSet加载数据

视频讲解见土堆视频p7

pytorch官网提供的CUDA版本没有怎么班_python_11


pytorch官网提供的CUDA版本没有怎么班_命令行_12

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):  # 创建MyData类继承Dataset

    def __init__(self, root_dir, label_dir):  # 创建初始化
        self.root_dir = root_dir              # 'dataset/train'
        self.label_dir = label_dir            # 'ants'
        self.path = os.path.join(self.root_dir, self.label_dir)    # 'dataset/train\\ants'
        self.img_path = os.listdir(self.path)


    def __getitem__(self, idx):   # idx作为一个编号
        img_name = self.img_path[idx]         # '0013035.jpg'
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)    # 'dataset/train\\ants\\0013035.jpg'
        img = Image.open(img_item_path)       # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x231AA844B00>
        label = self.label_dir                # 'ants'
        return img, label

    def __len__(self):
        return len(self.img_path)


root_dir = "dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir,ants_label_dir)
bees_dataset = MyData(root_dir,bees_label_dir)

train_dataset = ants_dataset + bees_dataset

9.TensorBoard

▲导包错误
from torch.utils.tensorboard import SummaryWriter #导入SummaryWriter 报错
解决方法 改成:from tensorboardX import SummaryWriter (需要pip install tensorboardX )
pip install -i https://mirrors.aliyun.com/pypi/simple/ tensorboardX

▲y=x实例测试add_scalar

from tensorboardX import SummaryWriter
writer = SummaryWriter("logs")   #通过ctrl可看文档,logs是名字

# y = x
for i in range(100):
    writer.add_scalar("y=x", i, i)

writer.close()

运行后,生成logs文件

pytorch官网提供的CUDA版本没有怎么班_pytorch_13


打开该logs

命令行输入:

tensorboard --logdir=logs      #logdir=事件文件所在文件夹名
或者
tensorboard --logdir=logs --port=6007   #port指定端口打开

▲测试add_image
按住ctrl查看文档,可以看到需要的图片是numpy_compatible类型的
在console里测试,

from PIL import Image
image_path = "data/train/ants_image/0013035.jpg"
img = Image.open(image_path)
print(type(img))  #查看这个img的类型
# 输出<class 'PIL.JpegImagePlugin.JpegImageFile'>   是JpegImageFile类型,不符合要求

#所以将图片转换成numpy类型
import numpy as np
img_array = np.array(img)
print(type(img_array))
#<class 'numpy.ndarray'>

在pycharm中进行运行

from tensorboardX import SummaryWriter
import numpy as np
from PIL import Image

writer = SummaryWriter("logs")

# 测试add_image
img_path = "data/train/ants_image/0013035.jpg"
img_PIL = Image.open(img_path)     # type:<class 'PIL.JpegImagePlugin.JpegImageFile'>,即转换成JpegImageFile类型
img_array = np.array(img_PIL)      # type:<class 'numpy.ndarray'>,即转换成numpy类型
print(img_array.shape)             # 判断一下img_array的shape,输出(512, 768, 3)       #或者将这段在console中运行,可以直接看到img_array的各种信息
# writer.add_image("test", img_array, 1)     这样运行是会报错的,从add_image的官方文档可以看出来,shape的默认是(3, H, W),而此处img_array的shape是(H,W,3)。而官方文档也给出了解决方法,即确定dataformats。
writer.add_image("test", img_array, 1, dataformats='HWC')  # 在官方文档的Examples里有   1是步数,dataformats是shape

writer.close()

同样在命令行中输入

tensorboard --logdir=logs --port=6007   #port指定端口打开

即可在打开的网址的Image中看到每一步的图片

alt+回车:进行错误提醒

10.transforms

from torchvision import transforms

▲文档:

pytorch官网提供的CUDA版本没有怎么班_命令行_14

▲transforms的用法:
transforms是有个py文件,里面有各种各样的类。我们要用里面的类作为工具。

from PIL import Image
from torchvision import transforms

# 用PIL读取图片
img_path = "data/train/ants_image/0013035.jpg"
img_PIL = Image.open(img_path)    # img:<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x15AFF9D68D0>

# 这两句是transforms的精髓(注意:如果直接img_tensor = transforms.ToTensor(img_PIL)就是错误的)请思考一下。
# 用transforms将PIL图片类型转换为tensor类型
tensor_trans = transforms.ToTensor()   # 从transforms中选择一个class进行创建:  tool = transforms.ToTensor()
img_tensor = tensor_trans(img_PIL)     # 看这个class需要什么东西,进行传参:      result = tool(input)
# print(img_tensor)

▲tensor的数据类型:

pytorch官网提供的CUDA版本没有怎么班_Image_15


transforms的运用:

from PIL import Image
from torchvision import transforms
import cv2
from tensorboardX import SummaryWriter

# python的用法 ——tensor数据类型
# 通过transforms.ToTensor去看两个问题
# 1.transforms 该如何使用(python)
# 2.为什么需要Tensor数据类型

# 用PIL读取图片
img_path = "data/train/ants_image/0013035.jpg"
img_PIL = Image.open(img_path)    # img:<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x15AFF9D68D0>


# 用opencv读取图片成numpy类型
img_cv = cv2.imread(img_path)   # 用print(type(cv_img))或者console查看类型: <class 'numpy.ndarray'>
print(img_cv.shape)             # 注意图片的shape


# 用transforms将PIL图片类型转换为tensor类型
tensor_trans = transforms.ToTensor()   # 从transforms中选择一个class进行创建:  tool = transforms.ToTensor()
img_tensor = tensor_trans(img_PIL)     # 看这个class需要什么东西,进行传参:      result = tool(input)
# print(img_tensor)


# 用transforms将numpy类型转换为tensor类型
tensor_trans = transforms.ToTensor()
img_tensor_cv = tensor_trans(img_cv)


writer = SummaryWriter("logs")
writer.add_image("numpy_img", img_cv, dataformats='HWC')    # 注意shape
writer.add_image("Tensor_img", img_tensor)
writer.add_image("Tensor_img_cv", img_tensor_cv)
writer.close()

▲常见的transforms:

pytorch官网提供的CUDA版本没有怎么班_python_16


pytorch官网提供的CUDA版本没有怎么班_命令行_17


transforms的各个函数中点开有一些属性,常见的有__init__ 以及__call__

__call__的用法:

class Person:
    def __call__(self, name):
        print("__call__  " + "hello " + name)

    def hello(self, name):
        print("hello " + name)

p = Person()
p("小明")   # 调用方法的不同,可以直接在对象后面打括号。输出: __call__  hello 小明
p.hello("小红")   # hello 小红

▇ 常见的transforms——Compose:

把多个transforms联合在一起。文档里有用法示例

pytorch官网提供的CUDA版本没有怎么班_深度学习_18


▇ 常见的transforms——ToTensor:

Convert a PIL Image or numpy.ndarray to tensor.

(在函数的括号里按住ctrl+p可以进行参数提醒)

# 常用的transforms
from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms

img_PIL = Image.open("data/train/ants_image/0013035.jpg")
print(img_PIL)  # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x1A684D48978>

# ToTensor的使用
trans_toTenser = transforms.ToTensor()
img_tensor = trans_toTenser(img_PIL)

writer = SummaryWriter("logs")
writer.add_image("ToTensor", img_tensor)
writer.close()

▇ 常见的transforms——Normalize:

pytorch官网提供的CUDA版本没有怎么班_pytorch_19

output[channel] = (input[channel] - mean[channel]) / std[channel] 例如:
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) 若输入的像素是[0,1],则输出的像素则为[-1,1]
注意:此处图片有三个维度,所以每个维度的均值和标准差都要写

# 常用的transforms
from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms

img_PIL = Image.open("data/train/ants_image/0013035.jpg")
print(img_PIL)  # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x1A684D48978>

writer = SummaryWriter("logs")

# ToTensor的使用
trans_toTenser = transforms.ToTensor()
img_tensor = trans_toTenser(img_PIL)
writer.add_image("ToTensor", img_tensor)

# Normalize的使用
print(img_tensor[0][0][0])  # 第一层 第一行 第一列
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])  # mean:均值  std:标准差,注意看文档。此处图片有三个维度,所以每个维度的均值和标准差都要写
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])  # 第一层 第一行 第一列
writer.add_image("Normalize的使用", img_norm)
writer.close()

输出:

tensor(0.3137)

tensor(-0.3725)

图片:

pytorch官网提供的CUDA版本没有怎么班_Image_20


▇ 常见的transforms——Resize:

看文档

# 常用的transforms
from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms

writer = SummaryWriter("logs")
img_PIL = Image.open("data/train/ants_image/0013035.jpg")  # img_PIL: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x1A684D48978>

# ToTensor的使用
trans_toTenser = transforms.ToTensor()
img_tensor = trans_toTenser(img_PIL)
writer.add_image("ToTensor", img_tensor)

# Resize的使用
trans_resize = transforms.Resize((512, 512))
img_resize = trans_resize(img_PIL)  # img_resize: <PIL.Image.Image image mode=RGB size=512x512 at 0x2AD8FE676D8>
img_resize = trans_toTenser(img_resize)  # img_resize: tensor
writer.add_image("Resize", img_resize)
writer.close()

最终效果:

pytorch官网提供的CUDA版本没有怎么班_深度学习_21

▇ 常见的transforms——Compose:
Composes several transforms together.
注:Compose的用法要注意输入输出。例如trans_resize_2是PIL->PIL, trans_toTenser是将PIL—>tensor,前面的输出必须是后面的输入类型

# 常用的transforms
from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms


img_PIL = Image.open("data/train/ants_image/0013035.jpg")
print(img_PIL)  # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x1A684D48978>

writer = SummaryWriter("logs")

# ToTensor的使用
trans_toTenser = transforms.ToTensor()
img_tensor = trans_toTenser(img_PIL)
writer.add_image("ToTensor", img_tensor)

# Resize的使用
# img_PIL: <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x2AD8F8E8518>
trans_resize = transforms.Resize((800, 400))
img_resize = trans_resize(img_PIL)  # img_resize: <PIL.Image.Image image mode=RGB size=512x512 at 0x2AD8FE676D8>
img_resize = trans_toTenser(img_resize)  # img_resize: tensor
writer.add_image("Resize", img_resize, 1)


# Compose的使用
trans_resize_2 = transforms.Resize(400)
# Compose的用法要注意输入输出。例如trans_resize_2是PIL->PIL, trans_toTenser是将PIL—>tensor,前面的输出必须是后面的输入类型
trans_compose = transforms.Compose([trans_resize_2, trans_toTenser])
img_resize_compose = trans_compose(img_PIL)
writer.add_image("Resize_2", img_resize_compose, 0)

writer.close()

▇ 常见的transforms——RandomCrop:
随机裁剪,随机裁剪图片上的某个部位

# 常用的transforms
from PIL import Image
from tensorboardX import SummaryWriter
from torchvision import transforms


img_PIL = Image.open("data/train/ants_image/0013035.jpg")
print(img_PIL)  # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=768x512 at 0x1A684D48978>

writer = SummaryWriter("logs")

# ToTensor的使用
trans_toTenser = transforms.ToTensor()
img_tensor = trans_toTenser(img_PIL)
writer.add_image("ToTensor", img_tensor)

# RandomCrop
trans_random = transforms.RandomCrop((500, 100))  # 随机裁剪
trans_random_compose = transforms.Compose([trans_random, trans_toTenser]) # 转化为tensor类型
for i in range(10):
    img_crop = trans_random_compose(img_PIL)  # 随机裁剪10个
    writer.add_image("RandomCropHW", img_crop, i)

writer.close()

总结:官方文档里都有参数args,返回值returns以及类型
如果不知道类型,可以通过
print()
print(type())
debug