前言

这是一个课设,用python做一个扫描王软件

我主要做的GUI部分,记录分享一下。也是第一次用python做小软件,python的方便果然是名不虚传

遇到问题

1.python版本

下载了python3.7的编译器

由于最终软件要在win7上运行,即32位的,因此下载了python3.7的32位

打包后遇到问题:w10打包的不能在w7上运行----->下载python32位的解释器

在w10执行python代码,参考博客:

2.opencv降级

参考博客:

3.安装打包软件pyinstaller

参考博客:

##最终打包代码
pyinstaller -F -w -i 图片名.ico  文件名.py

python自己搭建一个练习平台 用python做一个软件_python自己搭建一个练习平台

4.输出的图片没法保存

有中文路径

软件效果

python自己搭建一个练习平台 用python做一个软件_开发语言_02

python代码

1.GUI部分
import PySimpleGUI as sg
import PIL.Image
import scanner_doee2
import cv2
import os

import numpy as np

import other
from other import convert_to_bytes


from tkinter import *



# 全局变量
mp_path = ['读取图像','原图处理','滤镜']
mp_key = ['原图处理', '图像翻转', '寻找轮廓','读取图像','img0']
choices = ('素描滤镜','复古滤镜','反色滤镜','边界滤镜', '模糊滤镜','不加滤镜','浮雕滤镜')
#缓存图片标号
# 原图/翻转后的图片  0
# 圈出轮廓的图 10
# 透视变换后 11
# 调整亮度和对比度后的图 2
# 添加滤镜后的图 3

sg.theme('Light Blue 2')
layout1 = [
            [sg.Frame(layout=[
                [sg.Text('图像地址'), sg.Input(key='path_in'), sg.FileBrowse()],
                [sg.Button('读取图像')]
            ], title='读图',title_color='blue')],

          [sg.Button('翻转调整'),sg.Button('矫正处理')],

            [sg.Frame(layout=[
                [sg.Button('手动调节'), sg.Button('自适应均衡化'), sg.Button('清空效果')],
            ], title='亮度和对比度调节',title_color='blue')],

           [sg.Frame(layout = [
                    [sg.Listbox(choices, size=(15, len(choices)), key='filter')],
                    [sg.Button('滤镜处理')]
                                 ],  title='滤镜', title_color='blue') ],

           [sg.Frame(layout=[
               [sg.Button('阈值调节')]],
               title='阈值', title_color='blue', relief=sg.RELIEF_SUNKEN, tooltip='Use these to set flags')],

          [sg.Frame(layout=[
                        [sg.Radio('普通', "RADIO1",key='普通', default=True, size=(10, 1)), sg.Radio('拍书', "RADIO1",key='拍书'),sg.Radio('证书', "RADIO1", key='证件',default=False, size=(10, 1))]],
                        title='应用场景', title_color='blue', relief=sg.RELIEF_SUNKEN, tooltip='Use these to set flags')],


         [sg.Frame(layout=[
            [sg.Text('保存地址'), sg.Input(key='path_out'),sg.FolderBrowse(target='path_out')],
            [sg.Button('输出图像')]
            ], title='输出',title_color='blue')],

]
layout2 = [[sg.Text('原图:')],
              [sg.Image(key='img0',size=(300,300))],

           [sg.Text('寻找到轮廓后的图:')],
           [sg.Image(key='img10',  size=(300, 300))],

            [sg.Text('位置矫正+裁剪后的图:')],
              [sg.Image(key='img11',size=(300, 300))]
           ]
layout3=[ [sg.Text('调整后的图')],
              [sg.Image(key='img2',size=(500,500))]
          ]


layout = [[sg.Column(layout1, element_justification='c'), sg.VSeperator(),sg.Column(layout2, element_justification='c'),sg.Column(layout3, element_justification='c')]]
window = sg.Window('扫描王', layout)



while (True):
    event, values = window.read()
    if event !=None:
        print(event,values)

    if event =='读取图像':
      path_in = values['path_in']
      path_save=os.path.dirname(path_in)
      img0=cv2.imread(path_in)
      print(path_save)
      scanner_doee2.varible(path_save)

      # orig =  img0  #备份原图
      # 重新设置图片的大小,以便对其进行处理:选择最佳维度,以便重要内容不会丢失
      # img0 = cv2.resize(img0, (1500, 880))
      cv2.imwrite(path_save+'/img0.jpg',img0)

      window['img0'].update(data=convert_to_bytes(path_in, (300,300)))




    if event =='翻转调整':
        img0=np.rot90(img0)
        cv2.imwrite(path_save + '/img0.jpg', img0)
        window['img0'].update(data=convert_to_bytes(path_save+'/img0.jpg', (300, 300)))

    if event=='矫正处理':
        img1=scanner_doee2.solve(img0)
        img2=img1
        img3=img1
        window['img10'].update(data=convert_to_bytes(path_save+'/img10.jpg', resize=(300,300)))
        window['img11'].update(data=convert_to_bytes(path_save+'/img11.jpg', resize=(300,300)))

    if event=='清空效果':
        img2=img1
        cv2.imwrite(path_save + '/img2.jpg', img2)
        window['img2'].update(data=convert_to_bytes(path_save+'/img2.jpg', resize=(500,500)))


    if event=='手动调节':
        img2=scanner_doee2.light(img2)
        cv2.imwrite(path_save + '/img2.jpg', img2)
        window['img2'].update(data=convert_to_bytes(path_save+'/img2.jpg', resize=(500,500)))

    if event=='自适应均衡化':
        img2=scanner_doee2.autoEqualHistColor(img2)
        cv2.imwrite(path_save + '/img2.jpg', img2)
        window['img2'].update(data=convert_to_bytes(path_save+'/img2.jpg', resize=(500,500)))

    if event=='滤镜处理':
        img3=img2
        ss=values['filter']
        print(ss,ss[0])
        if ss[0]=='复古滤镜':
            img3 = scanner_doee2.mirror2(img2)
        elif ss[0]=='素描滤镜':
            print(ss)
            img3 = scanner_doee2.mirror1(img2)
        elif ss[0] == '反色滤镜':
            print(ss)
            img3 = scanner_doee2.mirror3(img2)
        elif ss[0] == '边界滤镜':
            img3 = scanner_doee2.mirror4(img2)
        elif ss[0] == '浮雕滤镜':
            img3 = scanner_doee2.mirror5(img2,1)
        elif ss[0] == '模糊滤镜':
            img3 = scanner_doee2.mirror5(img2,2)
        elif ss[0]=='不加滤镜':
            img3=img2

        cv2.imwrite(path_save + '/img2.jpg', img3)
        window['img2'].update(data=convert_to_bytes(path_save + '/img2.jpg', resize=(500, 500)))

    if event=='阈值调节':
        img4=img2
        img4=scanner_doee2.yuzhi(img2)
        cv2.imwrite(path_save + '/img2.jpg', img4)
        window['img2'].update(data=convert_to_bytes(path_save + '/img2.jpg', resize=(500, 500)))

    if event=='输出图像':
        img5=cv2.imread(path_save + '/img2.jpg')
        h,w,c=img5.shape
        # A4 297*210mm
        # B5 250*176
        # 身份证 54*85.6

        if values['拍书']==True:
            scale = min(h/250,  w/176)
            img5=cv2.resize(img5,(int(176* scale), int(250* scale)))

        elif values['证件']==True:
            scale = min(h/54,  w/85.6)
            img5=cv2.resize(img5,(int(85.6* scale), int(54* scale)))

        elif values['普通']==True:
            img5 = cv2.imread(path_save + '/img2.jpg')

        cv2.imshow('output',img5)

        path_out=values['path_out']
        cv2.imwrite( path_out+ '/out.jpg', img5)
        # cv2.imwrite(path_save + '/img2.jpg', img5)


    if event == sg.WIN_CLOSED or event == 'Exit':
        break
2.算法部分
import cv2
import numpy as np
from math import sqrt
import cmath
from PIL import Image, ImageFilter
path_save='yes'
def varible(ss):
    global path_save
    path_save=ss
    print(path_save)

def rectify(h):
    h = h.reshape((4,2))   #改变数组的形状,变成4*2形状的数组
    hnew = np.zeros((4,2), dtype = np.float32)  #创建一个4*2的零矩阵
    #确定检测文档的四个顶点
    add = h.sum(1)
    hnew[0] = h[np.argmin(add)]   #argmin()函数是返回最大数的索引
    hnew[2] = h[np.argmax(add)]
 
    diff = np.diff(h, axis = 1)  #沿着制定轴计算第N维的离散差值
    hnew[1] = h[np.argmin(diff)]
    hnew[3] = h[np.argmax(diff)]
 
    return hnew

# 拟合曲线顶点的去中心化
def approxCenter(approx):
    sum_x,sum_y = 0,0
    approx_center = approx;
    for a in approx:
        sum_x = sum_x + a[0][0];
        sum_y = sum_y + a[0][1];
    avr_x = sum_x/len(approx);
    avr_y = sum_y/len(approx);
    for a in approx_center:
        a[0][0] = a[0][0] - avr_x
        a[0][1] = a[0][1] - avr_y
    return approx_center,avr_x,avr_y

#将顶点极坐标化,返回极角
def approxTheta(approx):
    cn = complex(approx[0][0],approx[0][1])   #得到每个点相对中心的直角坐标
    r,theta = cmath.polar(cn)       #将直角坐标转为极坐标,得到极角
    return theta

# 合并拟合多边形顶点中的相近点
# approx:拟合多边形(n维数组)
# M:距离阈值
def approxCombine(approx,M):
    del_indexs = []
    for i in range(len(approx)):
        if i not in del_indexs: #判断是否是已删点,如果是则跳过计算
            for j in range(i+1,len(approx)):
                if j not in del_indexs:     #判断是否是已删点,如果是则跳过计算
                    #计算两点距离
                    dis = sqrt((approx[i][0][0] - approx[j][0][0])**2 + (approx[i][0][1] - approx[j][0][1])**2)
                    if dis < M :
                        #将两个相近点,近似为中值点
                        approx[i][0][0] = (approx[i][0][0] + approx[j][0][0])/2 
                        approx[i][0][1] = (approx[i][0][1] + approx[j][0][1])/2 
                        del_indexs.append(j)
    approx = np.delete(approx, del_indexs,0)     #删除多余的近似点
    approx,avr_x,avr_y = approxCenter(approx);   #将顶点去中心化,用于计算极坐标
    approx = sorted(approx, key = approxTheta, reverse = True)    #按照极角进行降序排序
    approx = np.array(approx)   #sorted返回list型,转换为ndarray
    # 恢复去中心的顶点
    for a in approx:
        a[0][0] = a[0][0] + avr_x
        a[0][1] = a[0][1] + avr_y
    return approx


#伽马变换
#gamma > 1时,图像对比度增强
def gamma_trans(input_image, gamma):
    img_norm = input_image/255.0
    img_gamma = np.power(img_norm,gamma)*255.0
    img_gamma = img_gamma.astype(np.uint8)

    return img_gamma

# 彩色直方图均衡(对比度增强)(效果一般)
def equalHistColor(img_in):
    b, g, r = cv2.split(img_in)
    b1 = cv2.equalizeHist(b)
    g1 = cv2.equalizeHist(g)
    r1 = cv2.equalizeHist(r)
    img_out = cv2.merge([b1,g1,r1])
    return img_out

# 彩色伽马变换(对比度增强)(效果较好)
def gammaColor(img_in,gamma):
    b, g, r = cv2.split(img_in)
    b1 = gamma_trans(b,gamma)
    g1 = gamma_trans(g,gamma)
    r1 = gamma_trans(r,gamma)
    img_out = cv2.merge([b1,g1,r1])
    return img_out



# 亮度调节,原理:将原图与一张全黑图像融合,调节融合的比例,即为亮度调节
# c为原图所占比例,c > 1时,亮度增强
def light_img(img1, c):
    rows, cols, channels = img1.shape
    # 新建全零(黑色)图片数组:np.zeros(img1.shape, dtype=uint8)
    blank = np.zeros([rows, cols, channels], img1.dtype)
    dst = cv2.addWeighted(img1, c, blank, 1-c, 0)   #两幅图像融合,当1-c小于0时,亮度增强
    return dst


def solve(image):
    # print(path_save)
    # path_save='C:/Users/53055/Desktop/pythonProject3'

    #创建原始图像的副本
    orig = image.copy()
    orig_w, orig_h, ch = orig.shape  # 读取大小
    #重新设置图片的大小,以便对其进行处理:选择最佳维度,以便重要内容不会丢失
    image = cv2.resize(image, (1500,880))

    orig_h_ratio = orig_h / 1500.0  # 保存缩放比例
    orig_w_ratio = orig_w / 880.0  # 保存缩放比例


    #对图像进行灰度处理,并进而进行行高斯模糊处理
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    blurred = cv2.GaussianBlur(gray, (5,5), 0)
    #使用canny算法进行边缘检测
    edged = cv2.Canny(blurred,0,50)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
    edged = cv2.dilate(edged, kernel)  # 膨胀

    #创建canny算法处理后的副本
    orig_edged = edged.copy()


    #找到边缘图像中的轮廓,只保留最大的,并初始化屏幕轮廓
    #findContours()函数用于从二值图像中查找轮廓
    # RETR_LIST:寻找所有轮廓
    # CHAIN_APPROX_NONE:输出轮廓上所有的连续点
    contours, hierarchy = cv2.findContours(edged, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
    approxs = []
    for c in contours:
        p = cv2.arcLength(c, True)   #计算封闭轮廓的周长或者曲线的长度
        approx = cv2.approxPolyDP(c, 0.02*p, True)  #指定0.02*p精度逼近多边形曲线,这种近似曲线为闭合曲线,因此参数closed为True
        approx_cmb = approxCombine(approx,60)   # 合并轮廓中相近的坐标点
        if len(approx_cmb) == 4:                 #如果是四边
            approxs.append(approx_cmb)      #该轮廓为可能的目标轮廓

    # 将轮廓的拟合多边型按面积大小降序排序
    approxs = sorted(approxs, key = cv2.contourArea, reverse = True)
    # 选取面积最大的四边形轮廓
    target = approxs[0]

    # 将轮廓映射到原图上
    for t in target:
        t[0][0] = t[0][0] * orig_h_ratio
        t[0][1] = t[0][1] * orig_w_ratio

    # 在原灰度图上绘制寻找到的目标四边形轮廓
    orig_marked = orig
    # all_approxs = cv2.cvtColor(temp, cv2.COLOR_GRAY2RGB)
    cv2.drawContours(orig_marked,[target],-1,(0,255,0),8)
    # cv2.imshow('orig_marked',orig_marked)

    # 保存圈出轮廓的图
    cv2.imwrite(path_save + '/img10.jpg', orig_marked)


    # for i in range(len(approxs)):
    #     cv2.drawContours(all_approxs,[approxs[i]],-1,(0,255,0),2)



    #将目标轮廓映射到800*800四边形(用于透视变换)
    approx = rectify(target)
    pts2 = np.float32([[0,0],[800,0],[800,800],[0,800]])
    # 透视变换
    # 使用gtePerspectiveTransform函数获得透视变换矩阵:approx是源图像中四边形的4个定点集合位置;pts2是目标图像的4个定点集合位置
    M = cv2.getPerspectiveTransform(approx, pts2)
    # 使用warpPerspective函数对源图像进行透视变换,输出图像dst大小为800*800
    dst = cv2.warpPerspective(orig, M, (800,800))
    # 进行位置校正、裁剪(透视变换)后的图像
    # cv2.imshow("trans",dst)
    cv2.imwrite(path_save + '/img11.jpg', dst)
    return dst


# 彩色限制对比度自适应直方图均衡化(图像亮度均衡)
def autoEqualHistColor(img_in):
    b, g, r = cv2.split(img_in)
    clahe = cv2.createCLAHE(1,tileGridSize = (8,8))
    b1 = clahe.apply(b)
    g1 = clahe.apply(g)
    r1 = clahe.apply(r)
    img_out = cv2.merge([b1,g1,r1])

    return img_out


# 手动调节亮度和对比度
def light(dst):
    data=[110,220]
    def l_c_regulate(x):
        l = cv2.getTrackbarPos('light', 'light & contrast regulate')
        gamma = cv2.getTrackbarPos('contrast', 'light & contrast regulate')
        lighted = light_img(img_lc_regulate, l / 100.0)  # 亮度调节
        gammaed = gammaColor(lighted, gamma / 100.0)  # gamma变换
        cv2.imshow("light & contrast regulate", gammaed)
        data=[l,gamma]
        return gammaed
    img_lc_regulate = dst   # 复制原图
    cv2.namedWindow('light & contrast regulate')    #创建window
    cv2.createTrackbar('light', 'light & contrast regulate', 110, 500, l_c_regulate)       #亮度滑动条
    cv2.createTrackbar('contrast', 'light & contrast regulate', 210, 500, l_c_regulate)    #对比度滑动条
    l_c_regulate(0)      #先运行一次回调函数
    while(1):
        k=cv2.waitKey(1)&0xFF

        if k==27:   #ECS键
            cv2.destroyWindow('light & contrast regulate')
            lighted = light_img(img_lc_regulate, data[0] / 100.0)  # 亮度调节
            gammaed = gammaColor(lighted, data[1] / 100.0)  # gamma变换
            break
    return  gammaed


# 素描滤镜
def mirror1(img_in):
    img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)  # 转为灰度图
    img_in = cv2.equalizeHist(img_in)   # 直方图均衡化
    inv = 255- img_in   # 图像取反
    blur = cv2.GaussianBlur(inv, ksize=(5, 5), sigmaX=50, sigmaY=50)  # 高斯滤波
    res = cv2.divide(img_in, 255- blur, scale= 255)     #颜色减淡混合
    res = gamma_trans(res,2)    #伽马变换,增强对比度
    return res

#复古滤镜(运行超级慢)
def mirror2(img_in):
    img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)  # 转为灰度图
    im_color = cv2.applyColorMap(img_in, cv2.COLORMAP_PINK)
    return im_color

# 反色滤镜
def mirror3(img_in):
    inv = 255- img_in   # 图像取反
    return inv

# 边界滤镜(利用canny算子实现)
def mirror4(img_in):
    img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)
    img_f = cv2.Canny(img_in,100,200)
    return  img_f
    # cv2.imshow('img_f',img_f)

def mirror5(dst,type):
    img_f = Image.fromarray(cv2.cvtColor(dst,cv2.COLOR_BGR2RGB))
    if type ==1:
        img_f = img_f.filter(ImageFilter.EMBOSS)      #浮雕滤镜
    elif type==2:
        img_f = img_f.filter(ImageFilter.BLUR)      #模糊滤镜

    img_f = cv2.cvtColor(np.asarray(img_f),cv2.COLOR_RGB2BGR)
    return  img_f

    # # 以下为PIL库的部分滤镜效果
    #
    # # OpenCV的图片格式转换成PIL.Image格式
    # img_f = Image.fromarray(cv2.cvtColor(dst,cv2.COLOR_BGR2RGB))
    #
    # # 滤镜处理
    # # ImageFilter.BLUR	模糊滤镜
    # # ImageFilter.SHARPEN	锐化滤镜
    # # ImageFilter.SMOOTH	平滑滤镜
    # # ImageFilter.SMOOTH_MORE	平滑滤镜(阀值更大)
    # # ImageFilter.EMBOSS	浮雕滤镜
    # # ImageFilter.FIND_EDGES	边界滤镜
    # # ImageFilter.EDGE_ENHANCE	边界加强
    # # ImageFilter.EDGE_ENHANCE_MORE	边界加强(阀值更大)
    # # ImageFilter.CONTOUR	轮廓滤镜
    # img_f = img_f.filter(ImageFilter.EMBOSS)      #浮雕滤镜
    # # img_f = img_f.filter(ImageFilter.CONTOUR)     #素描滤镜
    # # img_f = img_f.filter(ImageFilter.FIND_EDGES)    #边界滤镜
    #
    # # PIL.Image转换成OpenCV格式
    # img_f = cv2.cvtColor(np.asarray(img_f),cv2.COLOR_RGB2BGR)


def yuzhi(img_in):
    # 二值化阈值调节示例
    # 关于二值化,用身份证照片测试时,全局阈值进行二值化效果还可以,但如果存在灰度不均匀,会出现部分信息缺失
    # OTSU自动阈值法的效果也不错(效果不错的前提是图像灰度均匀,本质是一种全局最佳阈值的方法,依旧存在全局阈值的缺点)
    # 使用区域自适应阈值时,对不同灰度的区域有很好的效果,但如果窗口过小,会导致噪点被放大,可以通过调节偏移阈值去除噪点
    # 窗口调大到一定值时,效果等同于使用全局阈值,因此最终使用区域自适应阈值方法进行二值化
    # demo中使用滑块调节自适应阈值窗口的size,
    # 关于消除噪点,尝试过高斯滤波、膨胀,效果不好
    data=[57,30]
    def bin_regulate(x):
        data[0] = cv2.getTrackbarPos('auto size', 'bin regulate')  # 自适应阈值窗口大小
        if data[0] == 0:
            data[0] = 1  # 窗口最小大小为3
        data[1] = cv2.getTrackbarPos('threshold', 'bin regulate')  # 自适应阈值偏移量
        # img_bin = cv2.GaussianBlur(img_bin, ksize=(3, 3), sigmaX=100, sigmaY=100)  #高斯滤波
        # 固定全局阈值二值化
        # ret,img_bin =  cv2.threshold(img_bin, t, 255, cv2.THRESH_BINARY)

        # OTSU自动阈值
        # ret,img_bin = cv2.threshold(img_bin, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)

        # 以下两种区域自适应阈值方法类似
        # 自适应阈值二值化(均值):第二个参数为领域内均值,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于均值减去这个常数
        # img_bin = cv2.adaptiveThreshold(img_bin, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 21, 2)
        # 自适应阈值二值化(高斯窗口)第二个参数为领域内像素点加权和,权重为一个高斯窗口,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于加权值减去这个常数
        img_bin = cv2.adaptiveThreshold(img_bin_i, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 2 * data[0] + 1, data[1])

        # 膨胀
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        # img_bin = cv2.dilate(img_bin,kernel)  #膨胀

        # 中值滤波
        # img_bin = cv2.medianBlur(img_bin, 2*blur_size+1)

        cv2.imshow("bin regulate", img_bin)
        pass

    img_gray = cv2.cvtColor(img_in, cv2.COLOR_BGR2GRAY)  # 转为灰度图
    img_bin_i = img_gray  # 复制灰度图
    cv2.namedWindow('bin regulate')  # 创建window
    cv2.createTrackbar('auto size', 'bin regulate', 57, 400, bin_regulate)  # 自适应阈值的窗口size值
    cv2.createTrackbar('threshold', 'bin regulate', 30, 100, bin_regulate)  # 自适应阈值偏移量
    bin_regulate(0)  # 先运行一次回调函数

    while (1):
        k = cv2.waitKey(1) & 0xFF

        if k == 27:  # ECS键
            img_bin = cv2.adaptiveThreshold(img_bin_i, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,
                                                2 * data[0] + 1, data[1])
            cv2.destroyWindow('bin regulate')

            break
    return img_bin

    # while (1):
    #     k = cv2.waitKey(1) & 0xFF
    #
    #     if k == 27:  # ECS键
    #         cv2.destroyWindow('light & contrast regulate')
    #         img_bin = cv2.adaptiveThreshold(img_bin_i, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,
    #                                         2 * data[0] + 1, data[1])
    #         break
    return img_bin





def other():
    # 二值化

    # 对透视变换后的图像进行灰度处理
    img_gray = cv2.cvtColor(dst, cv2.COLOR_BGR2GRAY)
    img_gray = gamma_trans(img_gray,1.2)    #伽马变换,增强对比度



    # 二值化阈值调节示例
    # 关于这个二值化,用身份证照片测试时,全局阈值进行二值化效果还可以,但如果存在灰度不均匀,会出现部分信息缺失
    # 使用区域自适应阈值时,对不同灰度的区域有很好的效果,但如果窗口过小,会有很多噪点被放大
    # 窗口调大到一定值时,效果等同于使用全局阈值,因此最终使用区域自适应阈值方法进行二值化
    # demo中使用滑块调节自适应阈值窗口的size
    # 为了消除噪点,尝试过高斯滤波、膨胀,效果不好
    # OTSU自动阈值法的效果也不错(效果不错的前提是图像灰度均匀,本质是一种全局最佳阈值的方法,依旧存在全局阈值的缺点)
    def bin_regulate(x):
        t = cv2.getTrackbarPos('auto size', 'bin regulate')
        if t == 0:
            t = 1   # 窗口最小大小为3
        # blur_size = cv2.getTrackbarPos('blursize', 'bin regulate')
        # img_bin = cv2.GaussianBlur(img_bin_regulate, ksize=(3, 3), sigmaX=100, sigmaY=100)  #高斯滤波
        # ret,img_bin =  cv2.threshold(img_bin_regulate, t, 255, cv2.THRESH_BINARY)    #进行固定阈值处理,得到二值图像
        img_bin = img_bin_regulate

        # 以下两种自适应阈值方法类似
        # 自适应阈值二值化(均值):第二个参数为领域内均值,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于均值减去这个常数
        # img_bin = cv2.adaptiveThreshold(img_bin, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 21, 2)
        # 自适应阈值二值化(高斯窗口)第二个参数为领域内像素点加权和,权重为一个高斯窗口,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于加权值减去这个常数
        img_bin = cv2.adaptiveThreshold(img_bin,255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 2*t+1, 2)

        # OTSU自动阈值(效果还可以)
        # ret,img_bin = cv2.threshold(img_bin, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)

        # 膨胀
        # kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        # img_bin = cv2.dilate(img_bin,kernel)  #膨胀

        cv2.imshow("bin regulate",img_bin)
        pass

    img_bin_regulate = img_gray     #复制灰度图
    cv2.namedWindow('bin regulate')    #创建window
    cv2.createTrackbar('auto size', 'bin regulate', 1, 400, bin_regulate)     #自适应阈值的窗口size值
    # cv2.createTrackbar('blursize', 'bin regulate', 1, 100, bin_regulate)     #高斯滤波size滚动条
    bin_regulate(0)      #先运行一次回调函数




    # #对透视变换后的图像使用阈值进行约束获得扫描结果

    # # 使用固定阈值操作:threshold()函数:有四个参数:第一个是原图像,第二个是进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,
    # # 第四个是一个方法选择参数:cv2.THRESH_BINARY(黑白二值)
    # # 该函数返回值有两个参数,第一个是retVal(得到的阈值值(在OTSU会用到)),第二个是阈值化后的图像
    # ret, th1 = cv2.threshold(dst, 132, 255, cv2.THRESH_BINARY)    #进行固定阈值处理,得到二值图像
    # # 使用Otsu's二值化,在最后一个参数加上cv2.THRESH_OTSU
    # ret2, th2 = cv2.threshold(dst, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)

    # # 使用自适应阈值操作:adaptiveThreshold()函数
    # # 第二个参数为领域内均值,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于均值减去这个常数
    # th3 = cv2.adaptiveThreshold(dst, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
    # # 第二个参数为领域内像素点加权和,权重为一个高斯窗口,第五个参数为规定正方形领域大小(11*11),第六个参数是常数C:阈值等于加权值减去这个常数
    # th4 = cv2.adaptiveThreshold(dst,255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)

    #输出处理后的图像
    cv2.imshow("orig", orig)
    cv2.imshow("gray", gray)
    cv2.imshow("blurred", blurred)
    cv2.imshow("canny_edge", orig_edged)
    cv2.imshow("marked", image)
    # cv2.imshow("thre_constant", th1)
    # cv2.imshow("thre_ostu", th2)
    # cv2.imshow("thre_auto1", th3)
    # cv2.imshow("thre_auto2", th4)
    cv2.imshow("orig_mark", dst)
    # cv2.imwrite("orig.jpg",dst)
    # cv2.imshow('all-approxs',all_approxs)

    cv2.waitKey(0)
    cv2.destroyAllWindows()
3.辅助代码
import PIL.Image
import io
import base64

global filename

def convert_to_bytes(file_or_bytes, resize=None):
    '''

    Will convert into bytes and optionally resize an image that is a file or a base64 bytes object.
    Turns into  PNG format in the process so that can be displayed by tkinter
    :param file_or_bytes: either a string filename or a bytes base64 image object
    :type file_or_bytes:  (Union[str, bytes])
    :param resize:  optional new size
    :type resize: (Tuple[int, int] or None)
    :return: (bytes) a byte-string object
    :rtype: (bytes)
    '''
    if isinstance(file_or_bytes, str):
        img = PIL.Image.open(file_or_bytes)
    else:
        try:
            img = PIL.Image.open(io.BytesIO(base64.b64decode(file_or_bytes)))
        except Exception as e:
            dataBytesIO = io.BytesIO(file_or_bytes)
            img = PIL.Image.open(dataBytesIO)

    cur_width, cur_height = img.size
    if resize:
        new_width, new_height = resize
        scale = min(new_height/cur_height, new_width/cur_width)
        img = img.resize((int(cur_width*scale), int(cur_height*scale)), PIL.Image.ANTIALIAS)
    bio = io.BytesIO()
    img.save(bio, format="PNG")
    del img
    return bio.getvalue()

def save_pic(filename,type,id):
    mp_type = {'0': '原图翻转', '白元芳': 78, '狄仁杰': 82}