“COMSOL Multiphysics多物理场仿真应用”
一、背景
电化学仿真技术通过对电池微观行为进行研究,明晰电池内部多现象机理,并将其数值化,通过数值方法实现对物理特征联合计算,建立完整的电池模型。COMSOL Multiphysics具有强大的多物理场全耦合仿真分析功能、高效的计算性能,可以保证数值仿真的高度精确,已被广泛应用于各个学科领域,近年来运用COMSOL来解决电化学实际工程问题也越来越普遍。
二、大纲
专题一:“COMSOL多物理场耦合仿真技术与应用-燃料电池”大纲
COMSOL仿真基础 | 1、COMSOL软件基本操作 1.1 创建模型一般步骤 1.2 几何创建方法 1.3 网格划分技巧 1.4 方程及边界设置 2、后处理 2.1 数据集创建 2.2 衍生量的计算 2.3 结果图的绘制 实例操作:肋片散热模型 |
COMSOL燃料电池仿真 | 3、燃料电池仿真 3.1 燃料电池开路电压计算 3.2 燃料电池三种极化损失 4、多孔电极有效扩散系数构建 4.1 多孔电极构建方法 4.2 曲率与孔隙率关系 4.3 尘气模型实现方法 实例操作:多孔电极模型、尘气输运模型 5、从简到真的建模方法 5.1 只考虑气体输运 5.2 添加导电过程 5.3 添加电化学过程 5.4 添加退化过程 实例操作:纽扣电池模型 6、连接体研究分析 6.1 燃料电池活化设置方法 6.2 传质-导电-电化学多场耦合方法 6.3 接触电阻、氧死区处理方法 6.4 连接体优化与设计 实例操作:连接体优化模型、新型连接体模型 |
7、直接碳燃料电池性能研究 7.1 Boudouard反应设置 7.2 热源设置方法 7.3 传质-导电-电化学-热多场耦合方法 7.4 性能分析 实例操作:直接碳燃料电池模型 8、应力分析 8.1 力学边界设置 8.2 损伤几率求解 8.3 残余应力分析 8.4 热应力分析 实例操作:微管应力模型 9、COMSOL锂电池仿真分析 9.1 锂电池活化极化方法 9.2 电化学-热耦合方法 实例操作:锂电池热管理模型 |
7、直接碳燃料电池性能研究 7.1 Boudouard反应设置 7.2 热源设置方法 7.3 传质-导电-电化学-热多场耦合方法 7.4 性能分析 实例操作:直接碳燃料电池模型 8、应力分析 8.1 力学边界设置 8.2 损伤几率求解 8.3 残余应力分析 8.4 热应力分析 实例操作:微管应力模型 9、COMSOL锂电池仿真分析 9.1 锂电池活化极化方法 9.2 电化学-热耦合方法 实例操作:锂电池热管理模型 |
专题课程二:“COMSOL多物理场耦合仿真技术与应用-锂离子电池”大纲
第一天 | 1. COMSOL 仿真基础 1.1 数值仿真基本要素及其在 COMSOL 中的对应 1.1.1 模型参数与变量 1.1.2 物理场添加及电解条件设置 1.1.3 模型构建与网格划分 1.1.4 求解器类型与设置 1.1.5 后处理及数据分析 1.2 COMSOL 中锂离子电池接口 1.2.1 电池基本物理过程及控制方程 1.2.2 常用电池边界条件及初始条件 1.2.3 常用电池电极材料参数设置 |
第一天 | 2. 锂离子电池 P2D 模型 2.1 P2D 模型的理解与分析 2.2 COMSOL 中电池 P2D 模型构建 2.2.1 模型参数输入 2.2.2 模型构建及模型材料设置 2.2.3 电池物理方程及参数设置 2.2.4 网格划分与求解器设置 2.3 电池典型充放电过程仿真及后处理技巧 |
第二天 | 3. 锂离子电池电化学-热耦合模型 3.1 P2D 电化学模型与电池热模型耦合 3.2 锂离子电池集总参数模型及其与电池热模型耦合 3.3 两种电池电化学-热耦合模型的区别及应用场景 3.4 圆柱形或方形锂离子电池建模及仿真演示 (二选一) |
第二天 | 4. 锂离子电池衰退模型及仿真 4.1 COMSOL 中电池充放电循环仿真 4.1.1 电池充放电循环边界条件设置 4.1.2 电池加速衰退设置 4.1.3 电池充放电循环仿真后处理技巧 4.2 锂离子电池常见衰退现象及其数学描述 4.2.1 负极 SEI 膜增厚过程仿真 4.2.2 活性锂损失计算 4.3 锂离子电池衰退模型构建及仿真演示 |
第三天 | 5. 动力电池热管理技术及数值仿真 5.1 热管理技术简述 5.2 动力电池风冷及模型构建 5.2.1 空气流动过程仿真及常用物理接口介绍 5.2.2 锂离子电池-空气流动耦合模型构建 5.2.3 典型工况电池空冷模型构建及仿真 5.3 动力电池液冷及模型构建 5.3.1 液气流动过程仿真及常用物理接口介绍 5.3.2 锂离子电池-冷却液流动耦合模型构建 5.3.3 典型工况电池液冷模型构建及仿真演示 |