本文对opencv中构建图和最大流/最小割的源码进行解读,添加了中文注释
图的概念和怎么运用最大流算法实现图的最小割,看我上一篇博客:【图割】最大流/最小割算法详解(Yuri Boykov and Vladimir Kolmogorov,2004 )
opencv中gcgraph.h源码(也许有些许改动),需要用的同学,可以添加.h头文件,直接复制粘下面的代码
#include <vector>
using namespace std;
#define MIN(a,b) (((a)<(b))?(a):(b))
typedef unsigned char uchar;
template <class TWeight>
class GCGraph
{
public:
GCGraph();
GCGraph(unsigned int vtxCount, unsigned int edgeCount);
~GCGraph();
void create(unsigned int vtxCount, unsigned int edgeCount); //给图的结点容器和边容器分配内存
int addVtx(); //添加空结点
void addEdges(int i, int j, TWeight w, TWeight revw); //添加点之间的边n-link
void addTermWeights(int i, TWeight sourceW, TWeight sinkW); //添加结点到顶点的边t-link
TWeight maxFlow(); //最大流函数
bool inSourceSegment(int i); //图对象调用最大流函数后,判断结点属不属于属于源点类(前景)
private:
class Vtx //结点类
{
public:
Vtx *next; //在maxflow算法中用于构建先进-先出队列
int parent;
int first; //首个相邻边
int ts; //时间戳
int dist; //到树根的距离
TWeight weight;
uchar t; //图中结点的标签,取值0或1,0为源节点(前景点),1为汇节点(背景点)
};
class Edge //边类
{
public:
int dst; //边指向的结点
int next; //该边的顶点的下一条边
TWeight weight; //边的权重
};
std::vector<Vtx> vtcs; //存放所有的结点
std::vector<Edge> edges; //存放所有的边
TWeight flow; //图的流量
};
template <class TWeight>
GCGraph<TWeight>::GCGraph()
{
flow = 0;
}
template <class TWeight>
GCGraph<TWeight>::GCGraph(unsigned int vtxCount, unsigned int edgeCount)
{
create(vtxCount, edgeCount);
}
template <class TWeight>
GCGraph<TWeight>::~GCGraph()
{
}
template <class TWeight>
void GCGraph<TWeight>::create(unsigned int vtxCount, unsigned int edgeCount) //构造函数的实际内容,根据节点数和边数
{
vtcs.reserve(vtxCount);
edges.reserve(edgeCount + 2);
flow = 0;
}
/*
函数功能:添加一个空结点,所有成员初始化为空
参数说明:无
返回值:当前结点在集合中的编号
*/
template <class TWeight>
int GCGraph<TWeight>::addVtx()
{
Vtx v;
memset(&v, 0, sizeof(Vtx)); //将结点申请到的内存空间全部清0(第二个参数0) 目的:由于结点中存在成员变量为指针,指针设置为null保证安全
vtcs.push_back(v);
return (int)vtcs.size() - 1; //返回值:当前结点在集合中的编号
}
/*
函数功能:添加一条结点i和结点j之间的边n-link(普通结点之间的边)
参数说明:
int---i: 弧头结点编号
int---j: 弧尾结点编号
Tweight---w: 正向弧权值
Tweight---reww: 逆向弧权值
返回值:无
*/
template <class TWeight>
void GCGraph<TWeight>::addEdges(int i, int j, TWeight w, TWeight revw)
{
assert(i >= 0 && i < (int)vtcs.size());
assert(j >= 0 && j < (int)vtcs.size());
assert(w >= 0 && revw >= 0);
assert(i != j);
Edge fromI, toI; // 正向弧:fromI, 反向弧 toI
fromI.dst = j; // 正向弧指向结点j
fromI.next = vtcs[i].first; //每个结点所发出的全部n-link弧(4个方向)都会被连接为一个链表,采用头插法插入所有的弧
fromI.weight = w; // 正向弧的权值w
vtcs[i].first = (int)edges.size(); //修改结点i的第一个弧为当前正向弧
edges.push_back(fromI); //正向弧加入弧集合
toI.dst = i;
toI.next = vtcs[j].first;
toI.weight = revw;
vtcs[j].first = (int)edges.size();
edges.push_back(toI);
}
/*
函数功能:为结点i的添加一条t-link弧(到终端结点的弧),添加节点的时候,同时调用此函数
参数说明:
int---i: 结点编号
Tweight---sourceW: 正向弧权值
Tweight---sinkW: 逆向弧权值
返回值:无
*/
template <class TWeight>
void GCGraph<TWeight>::addTermWeights(int i, TWeight sourceW, TWeight sinkW)
{
assert(i >= 0 && i < (int)vtcs.size());
TWeight dw = vtcs[i].weight;
if (dw > 0)
sourceW += dw;
else
sinkW -= dw;
flow += (sourceW < sinkW) ? sourceW : sinkW;
vtcs[i].weight = sourceW - sinkW;
}
/*
函数功能:最大流函数,将图的所有结点分割为源点类(前景)还是汇点类(背景)
参数:无
返回值:图的成员变量--flow
*/
template <class TWeight>
TWeight GCGraph<TWeight>::maxFlow()
{
const int TERMINAL = -1, ORPHAN = -2;
Vtx stub, *nilNode = &stub, *first = nilNode, *last = nilNode;//先进先出队列,保存当前活动结点,stub为哨兵结点
int curr_ts = 0; //当前时间戳
stub.next = nilNode; //初始化活动结点队列,首结点指向自己
Vtx *vtxPtr = &vtcs[0]; //结点指针
Edge *edgePtr = &edges[0]; //弧指针
vector<Vtx*> orphans; //孤立点集合
// 遍历所有的结点,初始化活动结点(active node)队列
for (int i = 0; i < (int)vtcs.size(); i++)
{
Vtx* v = vtxPtr + i;
v->ts = 0;
if (v->weight != 0) //当前结点t-vaule(即流量)不为0
{
last = last->next = v; //入队,插入到队尾
v->dist = 1; //路径长度记1
v->parent = TERMINAL; //标注其双亲为终端结点
v->t = v->weight < 0;
}
else
v->parent = 0; //孤结点
}
first = first->next; //首结点作为哨兵使用,本身无实际意义,移动到下一节点,即第一个有效结点
last->next = nilNode; //哨兵放置到队尾了。。。检测到哨兵说明一层查找结束
nilNode->next = 0;
//很长的循环,每次都按照以下三个步骤运行:
//搜索路径->拆分为森林->树的重构
for (;;)
{
Vtx* v, *u; // v表示当前元素,u为其相邻元素
int e0 = -1, ei = 0, ej = 0;
TWeight minWeight, weight; // 路径最小割(流量), weight当前流量
uchar vt; // 流向标识符,正向为0,反向为1
//---------------------------- 第一阶段: S 和 T 树的生长,找到一条s->t的路径 -------------------------//
while (first != nilNode)
{
v = first; // 取第一个元素存入v,作为当前结点
if (v->parent) // v非孤儿点
{
vt = v->t; // 纪录v的流向
// 广度优先搜索,以此搜索当前结点所有相邻结点, 方法为:遍历所有相邻边,调出边的终点就是相邻结点
for (ei = v->first; ei != 0; ei = edgePtr[ei].next)
{
// 每对结点都拥有两个反向的边,ei^vt表明检测的边是与v结点同向的
if (edgePtr[ei^vt].weight == 0)
continue;
u = vtxPtr + edgePtr[ei].dst; // 取出邻接点u
if (!u->parent) // 无父节点,即为孤儿点,v接受u作为其子节点
{
u->t = vt; // 设置结点u与v的流向相同
u->parent = ei ^ 1; // ei的末尾取反。。。
u->ts = v->ts; // 更新时间戳,由于u的路径长度通过v计算得到,因此有效性相同
u->dist = v->dist + 1; // u深度等于v加1
if (!u->next) // u不在队列中,入队,插入位置为队尾
{
u->next = nilNode; // 修改下一元素指针指向哨兵
last = last->next = u; // 插入队尾
}
continue;
}
if (u->t != vt) // u和v的流向不同,u可以到达另一终点,则找到一条路径
{
e0 = ei ^ vt;
break;
}
// u已经存在父节点,但是如果u的路径长度大于v+1,且u的时间戳较早,说明u走弯路了,修改u的路径,使其成为v的子结点
if (u->dist > v->dist + 1 && u->ts <= v->ts)
{
// reassign the parent
u->parent = ei ^ 1; // 从新设置u的父节点为v(编号ei),记录为当前的弧
u->ts = v->ts; // 更新u的时间戳与v相同
u->dist = v->dist + 1; // u为v的子结点,路径长度加1
}
}
if (e0 > 0)
break;
}
// exclude the vertex from the active list
first = first->next;
v->next = 0;
}
if (e0 <= 0)
break;
//----------------------------------- 第二阶段: 流量统计与树的拆分 ---------------------------------------//
//第一节: 查找路径中的最小权值
minWeight = edgePtr[e0].weight;
assert(minWeight > 0);
// 遍历整条路径分两个方向进行,从当前结点开始,向前回溯s树,向后回溯t树
// 2次遍历, k=1: 回溯s树, k=0: 回溯t树
for (int k = 1; k >= 0; k--)
{
//回溯的方法为:取当前结点的父节点,判断是否为终端结点
for (v = vtxPtr + edgePtr[e0^k].dst;; v = vtxPtr + edgePtr[ei].dst)
{
if ((ei = v->parent) < 0)
break;
weight = edgePtr[ei^k].weight;
minWeight = MIN(minWeight, weight);
assert(minWeight > 0);
}
weight = fabs(v->weight);
minWeight = MIN(minWeight, weight);
assert(minWeight > 0);
}
/*第二节:修改当前路径中的所有的weight权值
任何时候s和t树的结点都只有一条边使其连接到树中,当这条弧权值减少为0则此结点从树中断开,
若其无子结点,则成为孤立点,若其拥有子结点,则独立为森林,但是ei的子结点还不知道他们被孤立了!
*/
edgePtr[e0].weight -= minWeight; //正向路径权值减少
edgePtr[e0 ^ 1].weight += minWeight; //反向路径权值增加
flow += minWeight; //修改当前流量
// k = 1: source tree, k = 0: destination tree
for (int k = 1; k >= 0; k--)
{
for (v = vtxPtr + edgePtr[e0^k].dst;; v = vtxPtr + edgePtr[ei].dst)
{
if ((ei = v->parent) < 0)
break;
edgePtr[ei ^ (k ^ 1)].weight += minWeight;
if ((edgePtr[ei^k].weight -= minWeight) == 0)
{
orphans.push_back(v);
v->parent = ORPHAN;
}
}
v->weight = v->weight + minWeight*(1 - k * 2);
if (v->weight == 0)
{
orphans.push_back(v);
v->parent = ORPHAN;
}
}
//---------------------------- 第三阶段: 树的重构 寻找新的父节点,恢复搜索树 -----------------------------//
curr_ts++;
while (!orphans.empty())
{
Vtx* v = orphans.back(); //取一个孤儿
orphans.pop_back(); //删除栈顶元素,两步操作等价于出栈
int d, minDist = INT_MAX;
e0 = 0;
vt = v->t;
// 遍历当前结点的相邻点,ei为当前弧的编号
for (ei = v->first; ei != 0; ei = edgePtr[ei].next)
{
if (edgePtr[ei ^ (vt ^ 1)].weight == 0)
continue;
u = vtxPtr + edgePtr[ei].dst;
if (u->t != vt || u->parent == 0)
continue;
// 计算当前点路径长度
for (d = 0;;)
{
if (u->ts == curr_ts)
{
d += u->dist;
break;
}
ej = u->parent;
d++;
if (ej < 0)
{
if (ej == ORPHAN)
d = INT_MAX - 1;
else
{
u->ts = curr_ts;
u->dist = 1;
}
break;
}
u = vtxPtr + edgePtr[ej].dst;
}
// update the distance
if (++d < INT_MAX)
{
if (d < minDist)
{
minDist = d;
e0 = ei;
}
for (u = vtxPtr + edgePtr[ei].dst; u->ts != curr_ts; u = vtxPtr + edgePtr[u->parent].dst)
{
u->ts = curr_ts;
u->dist = --d;
}
}
}
if ((v->parent = e0) > 0)
{
v->ts = curr_ts;
v->dist = minDist;
continue;
}
/* no parent is found */
v->ts = 0;
for (ei = v->first; ei != 0; ei = edgePtr[ei].next)
{
u = vtxPtr + edgePtr[ei].dst;
ej = u->parent;
if (u->t != vt || !ej)
continue;
if (edgePtr[ei ^ (vt ^ 1)].weight && !u->next)
{
u->next = nilNode;
last = last->next = u;
}
if (ej > 0 && vtxPtr + edgePtr[ej].dst == v)
{
orphans.push_back(u);
u->parent = ORPHAN;
}
}
}
//第三阶段结束
}
return flow; //返回最大流量
}
/*
函数功能:判断结点是不是源点类(前景)
参数:结点在容器中位置
返回值:1或0,1:结点为前景,0:结点为背景
*/
template <class TWeight>
bool GCGraph<TWeight>::inSourceSegment(int i)
{
assert(i >= 0 && i < (int)vtcs.size());
return vtcs[i].t == 0;
};
图类声明和定义都在头文件gcgraph.h中,是因为使用了模板类,如果把成员函数放在.cpp文件中定义,编译时会出现