目录
- 前言
- 一.只保存参数
- 1.1. 保存
- 1.2. 加载
- 1.3. 在加载的模型上进行训练
- 二.保存整个模型
- 2.1. 保存
- 2.2. 加载
前言
主要有两种方法:
1.只保存参数(官方推荐,消耗的存储空间较小),详细讲解此方法。
2.保存整个模型结构
一.只保存参数
1.1. 保存
方法一:
torch.save(model.state_dict(), path)
model:定义的模型的实例变量,如model = resnet(),path是模型保存的路径,如path = “./model.pth”,path = “./model.pkl”,path = “./model.tar”,一定要加上后缀。
方法二:
如果想保存某一次的训练参数和模型,那么可以使用字典的方式进行保存:
state = {"model": model.state_dict(), "optimizer": optimizer.state_dict(), 'epoch': epoch}
torch,save(state, path)
1.2. 加载
针对方法一的模型加载:
model.load_state_dict(torrch.load(path))
针对第二种方法的模型加载:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epoch = checkpoint['epoch']
只保存参数的模型保存方法在加载模型的时候,加载的模型必须跟事先定义好的模型一致,否者需要调整网络结构(一般是调整最后的输出结构),并在该模型的实例对象(假设名为model)上进行加载,即在使用上述加载语句前已经有定义了一个和原模型一样的Net, 并且进行了实例化 model=Net( ) 。
如果每一个epoch或每n个epoch都要保存一次参数,可设置不同的path,如 path=‘./model’ + str(epoch) +‘.pth’,这样,不同epoch的参数就能保存在不同的文件中,选择保存识别率最大的模型参数也一样,只需在保存模型语句前加个if判断语句即可。
实例:只保存最新参数
#-*- coding:utf-8 -*-
'''本文件用于举例说明pytorch保存和加载文件的方法'''
import torch as torch
import torchvision as tv
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
import torch.backends.cudnn as cudnn
import datetime
import argparse
# 参数声明
batch_size = 32
epochs = 10
WORKERS = 0 # dataloder线程数
test_flag = True #测试标志,True时加载保存好的模型进行测试
ROOT = '/home/pxt/pytorch/cifar' # MNIST数据集保存路径
log_dir = '/home/pxt/pytorch/logs/cifar_model.pth' # 模型保存路径
# 加载MNIST数据集
transform = tv.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform)
test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform)
train_load = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=WORKERS)
test_load = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=WORKERS)
# 构造模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 256, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(256 * 8 * 8, 1024)
self.fc2 = nn.Linear(1024, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = self.pool(F.relu(self.conv4(x)))
x = x.view(-1, x.size()[1] * x.size()[2] * x.size()[3])
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net().cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 模型训练
def train(model, train_loader, epoch):
model.train()
train_loss = 0
for i, data in enumerate(train_loader, 0):
x, y = data
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
y_hat = model(x)
loss = criterion(y_hat, y)
loss.backward()
optimizer.step()
train_loss += loss
loss_mean = train_loss / (i+1)
print('Train Epoch: {}\t Loss: {:.6f}'.format(epoch, loss_mean.item()))
# 模型测试
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i, data in enumerate(test_loader, 0):
x, y = data
x = x.cuda()
y = y.cuda()
optimizer.zero_grad()
y_hat = model(x)
test_loss += criterion(y_hat, y).item()
pred = y_hat.max(1, keepdim=True)[1]
correct += pred.eq(y.view_as(pred)).sum().item()
test_loss /= (i+1)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_data), 100. * correct / len(test_data)))
def main():
# 如果test_flag=True,则加载已保存的模型
if test_flag:
# 加载保存的模型直接进行测试机验证,不进行此模块以后的步骤
checkpoint = torch.load(log_dir)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
epochs = checkpoint['epoch']
test(model, test_load)
return
for epoch in range(0, epochs):
train(model, train_load, epoch)
test(model, test_load)
# 保存模型
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state, log_dir)
if __name__ == '__main__':
main()
1.3. 在加载的模型上进行训练
def main():
# 如果test_flag=True,则加载已保存的模型
if test_flag:
# 加载保存的模型直接进行测试机验证,不进行此模块以后的步骤
checkpoint = torch.load(log_dir)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
test(model, test_load)
return
# 如果有保存的模型,则加载模型,并在其基础上继续训练
if os.path.exists(log_dir):
checkpoint = torch.load(log_dir)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
print('加载 epoch {} 成功!'.format(start_epoch))
else:
start_epoch = 0
print('无保存模型,将从头开始训练!')
for epoch in range(start_epoch+1, epochs):
train(model, train_load, epoch)
test(model, test_load)
# 保存模型
state = {'model':model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch':epoch}
torch.save(state, log_dir)
二.保存整个模型
2.1. 保存
torch.save(model, path)
2.2. 加载
model = torch.load(path)