本文是《Flink的sink实战》系列的第二篇,《Flink的sink实战之一:初探》对sink有了基本的了解,本章来体验将数据sink到kafka的操作;

版本和环境准备

本次实战的环境和版本如下:

  1. JDK:1.8.0_211
  2. Flink:1.9.2
  3. Maven:3.6.0
  4. 操作系统:macOS Catalina 10.15.3 (MacBook Pro 13-inch, 2018)
  5. IDEA:2018.3.5 (Ultimate Edition)
  6. Kafka:2.4.0
  7. Zookeeper:3.5.5
    请确保上述环境和服务已经就绪;

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示:




flink kafka性能 flink kafka版本_apache


这个git项目中有多个文件夹,本章的应用在flinksinkdemo文件夹下,如下图红框所示:


flink kafka性能 flink kafka版本_flink_02


准备工作

正式编码前,先去官网查看相关资料了解基本情况:

地址:https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/connectors/kafka.html我这里用的kafka是2.4.0版本,在官方文档查找对应的库和类,如下图红框所示:

flink kafka性能 flink kafka版本_flink 写kafka_03


kafka准备

  • 创建名为test006的topic,有四个分区,参考命令:
./kafka-topics.sh --create --bootstrap-server 127.0.0.1:9092 --replication-factor 1 --partitions 4 --topic test006
  • 在控制台消费test006的消息,参考命令:
./kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic test006
  • 此时如果该topic有消息进来,就会在控制台输出;
  • 接下来开始编码;

创建工程

  • 用maven命令创建flink工程:
mvn archetype:generate -DarchetypeGroupId=org.apache.flink -DarchetypeArtifactId=flink-quickstart-java -DarchetypeVersion=1.9.2
  • 根据提示,groupid输入com.bolingcavalry,artifactid输入flinksinkdemo,即可创建一个maven工程;
  • 在pom.xml中增加kafka依赖库:
org.apache.flink  flink-connector-kafka_2.11  1.9.0
  • 工程创建完成,开始编写flink任务的代码;

发送字符串消息的sink

先尝试发送字符串类型的消息:

  • 创建KafkaSerializationSchema接口的实现类,后面这个类要作为创建sink对象的参数使用:
package com.bolingcavalry.addsink;import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;import org.apache.kafka.clients.producer.ProducerRecord;import java.nio.charset.StandardCharsets;public class ProducerStringSerializationSchema implements KafkaSerializationSchema {    private String topic;    public ProducerStringSerializationSchema(String topic) {        super();        this.topic = topic;    }    @Override    public ProducerRecord serialize(String element, Long timestamp) {        return new ProducerRecord(topic, element.getBytes(StandardCharsets.UTF_8));    }}
  • 创建任务类KafkaStrSink,请注意FlinkKafkaProducer对象的参数,FlinkKafkaProducer.Semantic.EXACTLY_ONCE表示严格一次:
package com.bolingcavalry.addsink;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;import java.util.ArrayList;import java.util.List;import java.util.Properties;public class KafkaStrSink {    public static void main(String[] args) throws Exception {        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        //并行度为1        env.setParallelism(1);        Properties properties = new Properties();        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");        String topic = "test006";        FlinkKafkaProducer producer = new FlinkKafkaProducer<>(topic,                new ProducerStringSerializationSchema(topic),                properties,                FlinkKafkaProducer.Semantic.EXACTLY_ONCE);        //创建一个List,里面有两个Tuple2元素        List list = new ArrayList<>();        list.add("aaa");        list.add("bbb");        list.add("ccc");        list.add("ddd");        list.add("eee");        list.add("fff");        list.add("aaa");        //统计每个单词的数量        env.fromCollection(list)           .addSink(producer)           .setParallelism(4);        env.execute("sink demo : kafka str");    }}

使用mvn命令编译构建,在target目录得到文件 flinksinkdemo-1.0-SNAPSHOT.jar;在flink的web页面提交 flinksinkdemo-1.0-SNAPSHOT.jar,并制定执行类,如下图:

flink kafka性能 flink kafka版本_flink kafka性能_04


  • 提交成功后,如果flink有四个可用slot,任务会立即执行,会在消费kafak消息的终端收到消息,如下图:


flink kafka性能 flink kafka版本_kafka_05


  • 任务执行情况如下图:


flink kafka性能 flink kafka版本_flink 写kafka_06


发送对象消息的sink

再来尝试如何发送对象类型的消息,这里的对象选择常用的Tuple2对象:

  • 创建KafkaSerializationSchema接口的实现类,该类后面要用作sink对象的入参,请注意代码中捕获异常的那段注释:生产环境慎用printStackTrace()!!!
package com.bolingcavalry.addsink;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.core.JsonProcessingException;import org.apache.flink.shaded.jackson2.com.fasterxml.jackson.databind.ObjectMapper;import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;import org.apache.kafka.clients.producer.ProducerRecord;import javax.annotation.Nullable;public class ObjSerializationSchema implements KafkaSerializationSchema> {    private String topic;    private ObjectMapper mapper;    public ObjSerializationSchema(String topic) {        super();        this.topic = topic;    }    @Override    public ProducerRecord serialize(Tuple2 stringIntegerTuple2, @Nullable Long timestamp) {        byte[] b = null;        if (mapper == null) {            mapper = new ObjectMapper();        }        try {            b= mapper.writeValueAsBytes(stringIntegerTuple2);        } catch (JsonProcessingException e) {            // 注意,在生产环境这是个非常危险的操作,            // 过多的错误打印会严重影响系统性能,请根据生产环境情况做调整            e.printStackTrace();        }        return new ProducerRecord(topic, b);    }}
  • 创建flink任务类:
package com.bolingcavalry.addsink;import org.apache.flink.api.java.tuple.Tuple2;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;import java.util.ArrayList;import java.util.List;import java.util.Properties;public class KafkaObjSink {    public static void main(String[] args) throws Exception {        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        //并行度为1        env.setParallelism(1);        Properties properties = new Properties();        //kafka的broker地址        properties.setProperty("bootstrap.servers", "192.168.50.43:9092");        String topic = "test006";        FlinkKafkaProducer> producer = new FlinkKafkaProducer<>(topic,                new ObjSerializationSchema(topic),                properties,                FlinkKafkaProducer.Semantic.EXACTLY_ONCE);        //创建一个List,里面有两个Tuple2元素        List> list = new ArrayList<>();        list.add(new Tuple2("aaa", 1));        list.add(new Tuple2("bbb", 1));        list.add(new Tuple2("ccc", 1));        list.add(new Tuple2("ddd", 1));        list.add(new Tuple2("eee", 1));        list.add(new Tuple2("fff", 1));        list.add(new Tuple2("aaa", 1));        //统计每个单词的数量        env.fromCollection(list)            .keyBy(0)            .sum(1)            .addSink(producer)            .setParallelism(4);                env.execute("sink demo : kafka obj");    }}
  • 像前一个任务那样编译构建,把jar提交到flink,并指定执行类是com.bolingcavalry.addsink.KafkaObjSink
  • 消费kafka消息的控制台输出如下:


flink kafka性能 flink kafka版本_flink kafka性能_07


  • 在web页面可见执行情况如下:


flink kafka性能 flink kafka版本_flink 写kafka_08


至此,flink将计算结果作为kafka消息发送出去的实战就完成了,希望能给您提供参考,接下来的章节,我们会继续体验官方提供的sink能力;