C#-opencv-图像中数字提取

本人初学者,正在学习C#中的opencv操作,下述代码目的是通过图像识别对银行卡的卡号进行识别并提取,要求位置置于银行卡原图中卡号正上方;

此次学习过程中通过查询python中的轮廓排序算法,手写了一个简易算法,方能实现此次学习的目的,同时加深了解了matchtemplate与matchshapes的应用区别,希望大家在阅读期间发现的问题的,及时反馈,本人会加以修正并提升!!!

卡片图像(百度获取)

提取图片数字Python 提取图片数字_图像处理

数字模板图像(百度获取)

提取图片数字Python 提取图片数字_opencv_02

0.准备工作

using System;
using OpenCvSharp;
using OpenCvSharp.Extensions;
using Size = OpenCvSharp.Size;
using Point = OpenCvSharp.Point;

1.定义轮廓排序简易函数-contours_sort

排序原理简单如下:
由上到下-通过轮廓获取外边界矩形(x,y,width,height)-y坐标从小到大排序
由下到上-通过轮廓获取外边界矩形(x,y,width,height)-y坐标+height(矩形高度)从大到小排序
由左到右-通过轮廓获取外边界矩形(x,y,width,height)-x坐标从小到大排序
由右到左-通过轮廓获取外边界矩形(x,y,width,height)-x坐标+width(矩形宽度)从大到小排序
轮廓面积由小到大-cv2.contourarea获取轮廓面积
轮廓面积由大到小
轮廓周长由小到大-cv2.arclength获取轮廓周长
轮廓周长由大到小

//轮廓排序函数简易C#版
        static private Point[][] contours_sort(Point[][] cnts,string sortMethod)
        {
            var contours = cnts;
            int cnt_num = contours.Length;
            Rect[] rects = new Rect[cnt_num];
            
            for(int i = 0; i < cnt_num; i++) rects[i] = Cv2.BoundingRect(contours[i]);
            string[] sortType = { 
                "top-to-bottom",        //0-坐标由上到下排序
                "bottom-to-top",        //1-坐标由下到上排序
                "left-to-right",        //2-坐标由左到右排序
                "right-to-left",        //3-坐标由右到左排序
                "area-min-to-max",      //4-面积-从小到大
                "area-max-to-min",      //5-面积-从大到小
                "length-min-to-max",    //6-周长-从小到达
                "length-max-to-min"     //7周长从大到小
            };
            int id = -1;
            for(int i = 0; i < sortType.Length; i++)
            {
                if (sortMethod == sortType[i]) id = i;
            }
            switch (id) {
                case 0:
                    for(int i = 0; i < cnt_num; i++)
                    {
                        for(int j = i+1; j < cnt_num; j++)
                        {
                            if (rects[j].Y <= rects[i].Y)
                            {
                                Rect tpr = rects[i];
                                rects[i] = rects[j];
                                rects[j] = tpr;
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 1:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (rects[j].Y+ rects[j].Height >= rects[i].Y + rects[i].Height)
                            {
                                Rect tpr = rects[i];
                                rects[i] = rects[j];
                                rects[j] = tpr;
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 2:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (rects[j].X <= rects[i].X)
                            {
                                Rect tpr = rects[i];
                                rects[i] = rects[j];
                                rects[j] = tpr;
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 3:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (rects[j].X+rects[j].Width >= rects[i].X + rects[i].Width)
                            {
                                Rect tpr = rects[i];
                                rects[i] = rects[j];
                                rects[j] = tpr;
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 4:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (Cv2.ContourArea(contours[j])<= Cv2.ContourArea(contours[j]))
                            {
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 5:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (Cv2.ContourArea(contours[j]) >= Cv2.ContourArea(contours[j]))
                            {
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 6:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (Cv2.ArcLength(contours[j],false) <= Cv2.ArcLength(contours[j], false))
                            {
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
                case 7:
                    for (int i = 0; i < cnt_num; i++)
                    {
                        for (int j = i + 1; j < cnt_num; j++)
                        {
                            if (Cv2.ArcLength(contours[j], false) >= Cv2.ArcLength(contours[j], false))
                            {
                                var temp = contours[i];
                                contours[i] = contours[j];
                                contours[j] = temp;
                            }
                        }
                    }
                    break;
            }
            return contours;
        }

2.常规参数设置

//标准尺寸设定
            int stand_width = 57;
            int stand_height = 88;
            //图像路径
            string c_path = "D://Jay.Lee//Study//2023//imgs//card.png";
            string t_path = "D://Jay.Lee//Study//2023//imgs//number.png";
            //图像获取
            Mat card = Cv2.ImRead(c_path);
            Mat template = Cv2.ImRead(t_path);
            //图像显示
            Cv2.ImShow("card原图显示", card);
            Cv2.ImShow("数字模板显示", template);

3.数字模板处理

//1.数字模板处理
            Mat tgray = new Mat();
            //1.1图像灰度处理
            Cv2.CvtColor(template, tgray, ColorConversionCodes.BGR2GRAY);
            //1.2图像二值化
            Cv2.Threshold(tgray, tgray, 50, 255, ThresholdTypes.BinaryInv);
            //1.3图像图像轮廓查找
            Cv2.FindContours(tgray.Clone(), out Point[][] tcnts, out HierarchyIndex[] hierarchy,
                RetrievalModes.External, ContourApproximationModes.ApproxSimple);
                //此处注意-后期依旧使用tgray图像,此处使用tgray.clone()
            //1.4轮廓从左向右排序
            tcnts = contours_sort(tcnts, "left-to-right");
            //1.5从二值化图中扣取每个存在外轮廓的矩形
            Mat[] templateImages = new Mat[tcnts.Length];
            for (int i = 0; i < tcnts.Length; i++)
            {
                Rect r = Cv2.BoundingRect(tcnts[i]);
                templateImages[i] = new Mat(tgray, new Rect(r.X , r.Y , r.Width , r.Height ));
                Cv2.Resize(templateImages[i], templateImages[i], new Size(stand_width, stand_height),0,0);
            }

4.卡片图像预处理

//2.卡片预处理
            //2.1形态学核定义
            var rowkernel = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(11, 3));
            var gapkernel = Cv2.GetStructuringElement(MorphShapes.Rect, new Size(9, 9));
            Mat cgray = new Mat();
            //2.2图像灰度处理
            Cv2.CvtColor(card, cgray, ColorConversionCodes.BGR2GRAY);
            //2.3图像二值化(Binary和Otsu自动判断)
            Cv2.Threshold(cgray, cgray, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
            //2.4图像缩小,便于后期形态学处理
            Mat small = cgray.Clone();
            Cv2.Resize(small, small, new Size(0, 0), 0.5, 0.5);
            //2.5两次闭处理,保证数字全部提取
            Cv2.MorphologyEx(small, small, MorphTypes.Close, rowkernel);
            Cv2.MorphologyEx(small, small, MorphTypes.Close, gapkernel);
            //2.6再次二值化
            Cv2.Threshold(small, small, 2, 255, ThresholdTypes.Binary);
            //2.6二值化图像放大至原图像尺寸
            Cv2.Resize(small, small, new Size(0, 0), 2, 2);
            //2.7二值化图像中轮廓提取
            Cv2.FindContours(small.Clone(), out Point[][] ccnts, out HierarchyIndex[] chierarchy,
                RetrievalModes.External, ContourApproximationModes.ApproxSimple);
            //2.8查询待得知数字轮廓及特征并进行筛选,此处得知高度为30
            int select_parts = 0;
            for (int i = 0; i < ccnts.Length; i++)
            {
                Rect rect = Cv2.BoundingRect(ccnts[i]);
                if (rect.Height == 30) select_parts += 1; 
            }
            Point[][] sccnts = new Point[select_parts][];
            for(int i = 0; i < ccnts.Length; i++)
            {
                Rect rect = Cv2.BoundingRect(ccnts[i]);
                if (rect.Height == 30)
                //筛选高度满足卡号数字特征的轮廓
                {
                    for(int j = 0; j < select_parts; j++)
                    {
                        if (sccnts[j] == null)
                        {
                            sccnts[j] = ccnts[i];
                            break;
                        }
                    }
                }
            }
            //2.9轮廓由左向右排序
            sccnts = contours_sort(sccnts, "left-to-right");
            Rect[] rects = new Rect[select_parts];
            //3.模板中数字查询并添加至原图
            for (int i = 0; i < select_parts; i++) rects[i] = Cv2.BoundingRect(sccnts[i]);
             //3.1对上述的每个轮廓切为仅存在一个外轮廓图像
            for(int i = 0; i < select_parts; i++)
            {
                string numbers = null;//初始化待添加至图像的字符串
                Mat card_parts = new Mat(cgray, rects[i]));//初始化存在卡号的局部卡片图像
                Cv2.FindContours(card_parts.Clone(), out Point[][] partcnts, out HierarchyIndex[] part_hierarchy,
                    RetrievalModes.External, ContourApproximationModes.ApproxSimple);
                    //寻找全部外轮廓
                Cv2.Threshold(card_parts, card_parts, 0, 255, ThresholdTypes.Binary | ThresholdTypes.Otsu);
                //卡片局部图像二值化
                partcnts = contours_sort(partcnts, "left-to-right");
                Rect[] part_rects = new Rect[partcnts.Length];

5.模板数字与卡片扣取数字匹配

//3.2扣取每个单个轮廓中的数字,并与模板匹配,添加至原图
                for(int j = 0; j < partcnts.Length; j++)
                {
                    part_rects[j] = Cv2.BoundingRect(partcnts[j]);
                    Mat part = new Mat(card_parts, rects[j]);
                    Cv2.Resize(part, part, new Size(stand_width, stand_height));
                    //将扣取数字图像尺寸与模板数字图像尺寸相同
                    double max_score = double.NegativeInfinity;
                    //初始化每个图像的最佳成绩
                    double max_id = -1;
                    //初始化对应最佳模板的id
                    for(int k = 0; k < templateImages.Length; k++)
                    {
                        Mat matchr = new Mat();
                        Cv2.MatchTemplate(templateImages[k], part, matchr, TemplateMatchModes.CCoeff);
                        //将图像与模板中每个图像进行模板匹配
                        Cv2.MinMaxLoc(matchr, out double minval, out double score);
                        //获取最佳成绩及相应id
                        if (score >= max_score)
                        {
                            max_score = score;
                            max_id = k;
                        }
                    }
                    numbers += max_id.ToString();//存储至字符串,以备后期添加
                  }
                  //将字符串添加至原图
                  Cv2.PutText(card, numbers, new Point(rects[i].X, rects[i].Y - 20), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
            }
            Cv2.ImShow("卡片数字显示", card);
            Cv2.WaitKey();
            Cv2.DestroyAllWindows();
            Cv2.WaitKey(0);
        }
    }

图像处理的最终结果

提取图片数字Python 提取图片数字_opencv_03