矩阵的秩怎么计算,这个问题一下子我居然不知道怎么下手。。虽然本科的时候学过线性代数,但是好久不用,很多东西都忘了。。今天略微梳理一下吧。
最简单直观的方法:
化成行最简形(或行阶梯形),然后数一下非零行数
例如:
将矩阵做初等行变换后,非零行的个数叫行秩
将其进行初等列变换后,非零列的个数叫列秩
矩阵的秩是方阵经过初等行变换或者列变换后的行秩或列秩
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,
如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
拓展资料;
变化规律
(1) 转置后秩不变
(2)r(A)<=min(m,n),A是m*n型矩阵
(3)r(kA)=r(A),k不等于0
(4)r(A)=0 <=> A=0
(5)r(A+B)<=r(A)+r(B)
(6)r(AB)<=min(r(A),r(B))
(7)r(A)+r(B)-n<=r(AB)
也就是说,化为阶梯形矩阵,阶梯形的非零行数即为矩阵的秩。把矩阵看成是列向量组,矩阵的秩等于这些向量组的极大线性无关组。
矩阵的秩
矩阵的秩是反映矩阵固有特性的一个重要概念。
定义1. 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A
的秩,记作rA,或rankA。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。
参考资料: http://bk.baidu.com/view/346467.htm
再来一个例子:
如图,如果是图中的矩阵的话,如何求它的秩?
通过初等行变换(就是一行的多少倍加的另一行,或行交换,或者某一行乘以一个非零倍数)把矩阵化成行阶梯型(行阶梯形就是任一行从左数第一个非零数的列序数都比上一行的大。
形象的说就是形成一个阶梯,)。这样数一下非零行(零行就是全是零的行,非零行就是不全为零的行)的个数就是秩。
根据定义求解,定义如下:
设有向量组A(A可以含有限个向量,也可以含无限多个向量),如果在A中能选出r个向量a1,a2,…ar,满足
(1)a1,a2,…ar线性无关;
(2)A中任意r+1个向量线性相关。
则向量组a1,a2,…,ar称为向量组A的最大线性无关向量组(简称最大无关组),数r称为向量组A的秩,只含零向量的向量组没有最大无关组,规定他的秩为0求解过程用相似矩阵的相似变化求解。
解:第三行减去第一行,得:
1,1,1,a;0,0,0,1;0,0,0,1-a。
第二行的-(1-a)倍加到第三行,得:
1,1,1,a;0,0,0,1;0,0,0,0。
这是一个行阶梯形矩阵,非零行的行数为2,所以矩阵的秩为2。
扩展资料:
矩阵的秩的定理:
若A~B,则R(A)= R(B)。
根据这一定理,为求矩阵的秩,只要把矩阵用初等行变换成行阶梯形矩阵,易见该矩阵最高阶非零子式的阶数。显然行阶梯形矩阵中非零行的行数即是该矩阵的秩。这就给出求矩阵秩的方法。
如果向量组:
(I)α1,α2,…,αsα1,α2,…,αs可以由。
(II)β1,β2,…,βtβ1,β2,…,βt线性表出,则r(II)≥r(I)r(II)≥r(I)。
解释为:能表出其他向量组,则其他向量组必然在自己的范围内,如果II的秩没有I大,则撑不起I张起的空间。这是很酷的一个定理。
r(A) = A的行秩(矩阵A的行向量组的秩)= A的列秩(矩阵A的列向量组的秩)。
初等变换的向量组的秩不变。
最后总结一下:
求秩有三种:
1 你给的例子
用初等变换秩不变 然后讨论未知数情况;比较简单;
2 特殊行列式
用加边法、累加写出结果
用行列式值是否等于零与满秩的关系;
3 实对称针用多角化再判断
更高级的一点的可以说有五种方法:
矩阵秩的求法很多,一般归结起来有以下几种:
1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。
2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。
3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。
4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。
5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。
拓展资料:
矩阵的运算:矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。
举例:另类加法可见于矩阵加法。若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。
如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + … + A[i, n] * B[n, j] 对所有 i 及 j。
例如此乘法有如下性质:(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C (“结合律”).(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C (“分配律”)。C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C (“分配律”)。
要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。对其他特殊乘法,见矩阵乘法。
另外一个结论:
矩阵的秩等于它的非零奇异值的个数。