目录

  • 模型调优
  • 调整超参数
  • 方法一:通过`tuninginstancesinglecrite`和`tuner`训练模型
  • 方法二:通过`autotuner`训练模型
  • 超参数设定的方法
  • 参数依赖


模型调优

当你对你的模型表现不满意时,你可能希望调高你的模型表现,可通过超参数调整或者尝试一个更加适合你的模型,本篇将介绍这些操作。

本章主要包括3个部分的内容:

超参数调整

机器学习模型都有默认的超参数,但是这些超参数不能根据数据自动调整,往往不能得到更好的性能表现。但是手动调整往往也不能获得最佳的表现,mlr3包含自动调参的策略,在此包中实现自动调参,需要指定:搜索空间(search_space)优化算法(调参方法)评估方法(重抽样策略)评价指标

特征选择

主要是通过mlr3filtermlr3select包进行。

嵌套重抽样

调整超参数

很多人戏称调参的过程就像是"炼丹"!确实差不多,而且很多时候你调整后的结果可能还不如默认的结果好!这就好比打游戏,“一顿操作猛如虎,一看战绩0比5”!

模型调优一定要基于对算法和数据的理解进行,不是随便调的。

我们使用著名的糖尿病数据集进行演示,首先创建任务

library(mlr3verse)
## 载入需要的程辑包:mlr3
task <- tsk("pima")
print(task)
## <TaskClassif:pima> (768 x 9)
## * Target: diabetes
## * Properties: twoclass
## * Features (8):
##   - dbl (8): age, glucose, insulin, mass, pedigree, pregnant, pressure,
##     triceps

选择算法,查看算法支持的超参数

learner <- lrn("classif.rpart")
learner$param_set
## <ParamSet>
##                 id    class lower upper nlevels        default value
##  1:             cp ParamDbl     0     1     Inf           0.01      
##  2:     keep_model ParamLgl    NA    NA       2          FALSE      
##  3:     maxcompete ParamInt     0   Inf     Inf              4      
##  4:       maxdepth ParamInt     1    30      30             30      
##  5:   maxsurrogate ParamInt     0   Inf     Inf              5      
##  6:      minbucket ParamInt     1   Inf     Inf <NoDefault[3]>      
##  7:       minsplit ParamInt     1   Inf     Inf             20      
##  8: surrogatestyle ParamInt     0     1       2              0      
##  9:   usesurrogate ParamInt     0     2       3              2      
## 10:           xval ParamInt     0   Inf     Inf             10     0

在这里我们选择调整复杂度参数cp和最小分支参数minsplit,并设定超参数的调整范围:

search_space <- ps(
  cp = p_dbl(lower = 0.001, upper = 0.1),
  minsplit = p_int(lower = 1, upper = 10)
)
search_space
## <ParamSet>
##          id    class lower upper nlevels        default value
## 1:       cp ParamDbl 0.001   0.1     Inf <NoDefault[3]>      
## 2: minsplit ParamInt 1.000  10.0      10 <NoDefault[3]>

然后选择重抽样方法和性能指标

hout <- rsmp("holdout", ratio = 0.7)
measure <- msr("classif.ce")

接下来进行调参有两种方法。

方法一:通过tuninginstancesinglecritetuner训练模型

library(mlr3tuning)
## 载入需要的程辑包:paradox

evals20 <- trm("evals", n_evals = 20) # 设定何时停止训练

# 统一放入instance中
instance <- TuningInstanceSingleCrit$new(
  task = task,
  learner = learner,
  resampling = hout,
  measure = measure,
  terminator = evals20,
  search_space = search_space
)
instance
## <TuningInstanceSingleCrit>
## * State:  Not optimized
## * Objective: <ObjectiveTuning:classif.rpart_on_pima>
## * Search Space:
## <ParamSet>
##          id    class lower upper nlevels        default value
## 1:       cp ParamDbl 0.001   0.1     Inf <NoDefault[3]>      
## 2: minsplit ParamInt 1.000  10.0      10 <NoDefault[3]>      
## * Terminator: <TerminatorEvals>
## * Terminated: FALSE
## * Archive:
## <ArchiveTuning>
## Null data.table (0 rows and 0 cols)

关于何时停止训练,mlr3给出了5种方法:

  • Terminate after a given time:一定时间后停止
  • Terninate after a given number of iterations:特定迭代次数后停止
  • Terminate after a specific performance has been reached:达到特定性能指标后停止
  • Terminate when tuning dose find a better configuration for a given number of iterations:在给定迭代次数中确实找到表现很好的参数组合后停止
  • A combination of above in ALL or ANY fashon:上面几种方法组合

然后还需要设置超参数搜索的方法:

mlr3tuning目前支持以下超参数搜索的方法:

  • Grid search:网格搜索
  • Random search:随机搜索
  • Generalized simulated annealing
  • Non-Linear optimization
# 这里选择网格搜索
tuner <- tnr("grid_search", resolution = 5) # 网格搜索

接下来就是进行训练模型,上面我们设置了网格搜索的分辨率是5,我们有2个超参数需要调整,所以理论上一共有5 * 5 = 25个组合,但是在前面的停止搜索的方法中我们选择了n_evals = 20,所有实际上在评价完20个组合后就会停止了!

#lgr::get_logger("mlr3")$set_threshold("warn") 
#lgr::get_logger("bbotk")$set_threshold("warn")   # 减少屏幕打印内容

tuner$optimize(instance)
## INFO  [20:51:28.312] [bbotk] Starting to optimize 2 parameter(s) with '<TunerGridSearch>' and '<TerminatorEvals> [n_evals=20, k=0]' 
## INFO  [20:51:28.331] [bbotk] Evaluating 1 configuration(s) 
## 省略输出
## INFO  [20:51:29.306] [bbotk]                                 uhash 
## INFO  [20:51:29.306] [bbotk]  58eb421d-f0ed-4246-8430-3c1832ae615c 
## INFO  [20:51:29.309] [bbotk] Finished optimizing after 20 evaluation(s) 
## INFO  [20:51:29.310] [bbotk] Result: 
## INFO  [20:51:29.310] [bbotk]       cp minsplit learner_param_vals  x_domain classif.ce 
## INFO  [20:51:29.310] [bbotk]  0.02575        3          <list[3]> <list[2]>  0.2130435
##         cp minsplit learner_param_vals  x_domain classif.ce
## 1: 0.02575        3          <list[3]> <list[2]>  0.2130435

查看调整好的超参数:

instance$result_learner_param_vals
## $xval
## [1] 0
## 
## $cp
## [1] 0.02575
## 
## $minsplit
## [1] 3

查看模型性能:

instance$result_y
## classif.ce 
##  0.2130435

查看每一次迭代的结果,只有20个:

instance$archive
## <ArchiveTuning>
##        cp minsplit classif.ce runtime_learners           timestamp batch_nr
##  1: 0.026        3       0.21             0.02 2022-02-27 20:51:28        1
##  2: 0.075        8       0.21             0.00 2022-02-27 20:51:28        2
##  3: 0.050        5       0.21             0.00 2022-02-27 20:51:28        3
##  4: 0.001        1       0.30             0.00 2022-02-27 20:51:28        4
##  5: 0.100        3       0.21             0.02 2022-02-27 20:51:28        5
##  6: 0.026        5       0.21             0.02 2022-02-27 20:51:28        6
##  7: 0.100        8       0.21             0.01 2022-02-27 20:51:28        7
##  8: 0.001        8       0.27             0.00 2022-02-27 20:51:28        8
##  9: 0.001        5       0.28             0.00 2022-02-27 20:51:28        9
## 10: 0.100        5       0.21             0.02 2022-02-27 20:51:28       10
## 11: 0.075       10       0.21             0.00 2022-02-27 20:51:28       11
## 12: 0.050       10       0.21             0.01 2022-02-27 20:51:28       12
## 13: 0.075        5       0.21             0.00 2022-02-27 20:51:28       13
## 14: 0.050        8       0.21             0.01 2022-02-27 20:51:29       14
## 15: 0.001       10       0.26             0.00 2022-02-27 20:51:29       15
## 16: 0.050        3       0.21             0.00 2022-02-27 20:51:29       16
## 17: 0.050        1       0.21             0.02 2022-02-27 20:51:29       17
## 18: 0.100       10       0.21             0.00 2022-02-27 20:51:29       18
## 19: 0.075        1       0.21             0.01 2022-02-27 20:51:29       19
## 20: 0.026        1       0.21             0.00 2022-02-27 20:51:29       20
##     warnings errors      resample_result
##  1:        0      0 <ResampleResult[22]>
##  2:        0      0 <ResampleResult[22]>
##  3:        0      0 <ResampleResult[22]>
##  4:        0      0 <ResampleResult[22]>
##  5:        0      0 <ResampleResult[22]>
##  6:        0      0 <ResampleResult[22]>
##  7:        0      0 <ResampleResult[22]>
##  8:        0      0 <ResampleResult[22]>
##  9:        0      0 <ResampleResult[22]>
## 10:        0      0 <ResampleResult[22]>
## 11:        0      0 <ResampleResult[22]>
## 12:        0      0 <ResampleResult[22]>
## 13:        0      0 <ResampleResult[22]>
## 14:        0      0 <ResampleResult[22]>
## 15:        0      0 <ResampleResult[22]>
## 16:        0      0 <ResampleResult[22]>
## 17:        0      0 <ResampleResult[22]>
## 18:        0      0 <ResampleResult[22]>
## 19:        0      0 <ResampleResult[22]>
## 20:        0      0 <ResampleResult[22]>

接下来就可以把训练好的超参数应用于模型,重新应用于数据:

learner$param_set$values <- instance$result_learner_param_vals
learner$train(task)

这个训练好的模型就可以用于预测了,使用learner$predict()即可!

以上步骤写起来有些复杂,与tidymodels相比不够简洁好理解,我刚开始学习的时候经常记不住,后来版本更新后终于有了简便写法:

instance <- tune(
  task = task,
  learner = learner,
  resampling = hout,
  measure = measure,
  search_space = search_space,
  method = "grid_search",
  resolution = 5,
  term_evals = 25
)
## INFO  [20:51:29.402] [bbotk] Starting to optimize 2 parameter(s) with '<TunerGridSearch>' and '<TerminatorEvals> [n_evals=25, k=0]' 
## INFO  [20:51:29.403] [bbotk] Evaluating 1 configuration(s) 
## INFO  [20:51:29.411] [mlr3] Running benchmark with 1 resampling iterations 
## 省略。。。
## INFO  [20:51:30.535] [bbotk]  0.02575       10          <list[3]> <list[2]>  0.2347826

instance$result_learner_param_vals
## $xval
## [1] 0
## 
## $cp
## [1] 0.02575
## 
## $minsplit
## [1] 10
instance$result_y
## classif.ce 
##  0.2347826
learner$param_set$values <- instance$result_learner_param_vals
learner$train(task)

mlr3也支持同时设定多个性能指标:

measures <- msrs(c("classif.ce","time_train")) # 设定多个评价指标

evals20 <- trm("evals", n_evals = 20)

instance <- TuningInstanceMultiCrit$new(
  task = task,
  learner = learner,
  resampling = hout,
  measures = measures,
  search_space = search_space,
  terminator = evals20
)

tuner$optimize(instance)
## INFO  [20:51:30.595] [bbotk] Starting to optimize 2 parameter(s) with '<TunerGridSearch>' and '<TerminatorEvals> [n_evals=20, k=0]' 
## INFO  [20:51:30.597] [bbotk] Evaluating 1 configuration(s) 
## 省略输出。。。

查看结果:

instance$result_learner_param_vals
## [[1]]
## [[1]]$xval
## [1] 0
## 
## [[1]]$cp
## [1] 0.0505
## 
## [[1]]$minsplit
## [1] 1
## 
## 
## [[2]]
## [[2]]$xval
## [1] 0
## 
## [[2]]$cp
## [1] 0.07525
## 
## [[2]]$minsplit
## [1] 1
## 
## 
## [[3]]
## [[3]]$xval
## [1] 0
## 
## [[3]]$cp
## [1] 0.07525
## 
## [[3]]$minsplit
## [1] 10
## 
## 
## [[4]]
## [[4]]$xval
## [1] 0
## 
## [[4]]$cp
## [1] 0.1
## 
## [[4]]$minsplit
## [1] 8
## 
## 
## [[5]]
## [[5]]$xval
## [1] 0
## 
## [[5]]$cp
## [1] 0.02575
## 
## [[5]]$minsplit
## [1] 3
## 
## 
## [[6]]
## [[6]]$xval
## [1] 0
## 
## [[6]]$cp
## [1] 0.07525
## 
## [[6]]$minsplit
## [1] 8
## 
## 
## [[7]]
## [[7]]$xval
## [1] 0
## 
## [[7]]$cp
## [1] 0.1
## 
## [[7]]$minsplit
## [1] 3
## 
## 
## [[8]]
## [[8]]$xval
## [1] 0
## 
## [[8]]$cp
## [1] 0.1
## 
## [[8]]$minsplit
## [1] 5
## 
## 
## [[9]]
## [[9]]$xval
## [1] 0
## 
## [[9]]$cp
## [1] 0.02575
## 
## [[9]]$minsplit
## [1] 5
## 
## 
## [[10]]
## [[10]]$xval
## [1] 0
## 
## [[10]]$cp
## [1] 0.07525
## 
## [[10]]$minsplit
## [1] 5
## 
## 
## [[11]]
## [[11]]$xval
## [1] 0
## 
## [[11]]$cp
## [1] 0.0505
## 
## [[11]]$minsplit
## [1] 8
## 
## 
## [[12]]
## [[12]]$xval
## [1] 0
## 
## [[12]]$cp
## [1] 0.0505
## 
## [[12]]$minsplit
## [1] 3
## 
## 
## [[13]]
## [[13]]$xval
## [1] 0
## 
## [[13]]$cp
## [1] 0.07525
## 
## [[13]]$minsplit
## [1] 3
## 
## 
## [[14]]
## [[14]]$xval
## [1] 0
## 
## [[14]]$cp
## [1] 0.0505
## 
## [[14]]$minsplit
## [1] 5
## 
## 
## [[15]]
## [[15]]$xval
## [1] 0
## 
## [[15]]$cp
## [1] 0.02575
## 
## [[15]]$minsplit
## [1] 1
instance$rusult_y
## NULL

以上就是第一种方法,接下来介绍第二种方法。

方法二:通过autotuner训练模型

这种方式方法把调整参数、将调整好的参数应用于模型放到一起了,但是也需要提前设定好各种需要的参数。

task <- tsk("pima") # 创建任务

leanrer <- lrn("classif.rpart") # 选择学习器

search_space <- ps(
  cp = p_dbl(0.001, 0.1),
  minsplit = p_int(1,10)
) # 设定搜索范围

terminator <- trm("evals", n_evals = 10) # 设定停止标志

tuner <- tnr("random_search") # 选择搜索方法

resampling <- rsmp("holdout") # 选择重抽样方法

measure <- msr("classif.acc") # 选择评价指标

# 训练
at <- AutoTuner$new(
  learner = learner,
  resampling = resampling,
  search_space = search_space,
  measure = measure,
  tuner = tuner,
  terminator = terminator
)

自动选择最优参数并作用于数据:

at$train(task)
## INFO  [20:51:31.873] [bbotk] Starting to optimize 2 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' 
## INFO  [20:51:31.882] [bbotk] Evaluating 1 configuration(s) 
##省略巨多输出
## INFO  [20:51:32.332] [bbotk]  0.02278977        3          <list[3]> <list[2]>   0.7695312
at$predict(task)
## <PredictionClassif> for 768 observations:
##     row_ids truth response
##           1   pos      pos
##           2   neg      neg
##           3   pos      neg
## ---                       
##         766   neg      neg
##         767   pos      neg
##         768   neg      neg

这个方法也有个简便写法:

auto_learner <- auto_tuner(
  learner = learner,
  resampling = resampling,
  measure = measure,
  search_space = search_space,
  method = "random_search",
  term_evals = 10
)

auto_learner$train(task)
## INFO  [20:51:32.407] [bbotk] Starting to optimize 2 parameter(s) with '<OptimizerRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' 
## INFO  [20:51:32.414] [bbotk] Evaluating 1 configuration(s) 
## INFO  [20:51:32.421] [mlr3] Running benchmark with 1 resampling iterations 
## INFO  [20:51:32.425] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) 
##省略巨多输出
auto_learner$predict(task)
## <PredictionClassif> for 768 observations:
##     row_ids truth response
##           1   pos      pos
##           2   neg      neg
##           3   pos      neg
## ---                       
##         766   neg      neg
##         767   pos      neg
##         768   neg      neg

超参数设定的方法

每次单独设置超参数的范围等可能会显得比较笨重无聊,mlr3也提供另外一种可以在选择学习器时进行设定超参数的方法。

# 在选择学习器时设置超参数范围
learner <- lrn("classif.svm")
learner$param_set$values$kernel <- "polynomial"
learner$param_set$values$degree <- to_tune(lower = 1, upper = 3)

print(learner$param_set$search_space())
## <ParamSet>
##        id    class lower upper nlevels        default value
## 1: degree ParamInt     1     3       3 <NoDefault[3]>

但其实这样也有问题,这个方法要求你对算法很熟悉,能够记住所有超参数记忆它们在mlr3中的拼写!但很显然这有点困难,所有我还是推荐第一种,每次单独设置,记不住还可以查看一下具体的超参数。

参数依赖

某些超参数只有在某些条件下才有效,比如支持向量机(SVM),它的degree参数只有在kernelpolynomial时才有效,这种情况也可以在mlr3中设置好。

library(data.table)
search_space = ps(
  cost = p_dbl(-1, 1, trafo = function(x) 10^x), # 可进行数据变换
  kernel = p_fct(c("polynomial", "radial")),
  degree = p_int(1, 3, depends = kernel == "polynomial") # 设置参数依赖
)
rbindlist(generate_design_grid(search_space, 3)$transpose(), fill = TRUE)
##     cost     kernel degree
##  1:  0.1 polynomial      1
##  2:  0.1 polynomial      2
##  3:  0.1 polynomial      3
##  4:  0.1     radial     NA
##  5:  1.0 polynomial      1
##  6:  1.0 polynomial      2
##  7:  1.0 polynomial      3
##  8:  1.0     radial     NA
##  9: 10.0 polynomial      1
## 10: 10.0 polynomial      2
## 11: 10.0 polynomial      3
## 12: 10.0     radial     NA

进行以上设置后在进行后面的操作时不会出错,自动处理。