目录

1 线性查找

2 二分查找

2.1 递归形式

2.2 非递归形式

3 插值查找

4 斐波那契查找


1 线性查找

代码实现:

public class SeqSearch {

	public static void main(String[] args) {
		int arr[] = { 1, 9, 11, -1, 34, 89 };// 没有顺序的数组
		int index = seqSearch(arr, -11);
		if(index == -1) {
			System.out.println("没有找到到");
		} else {
			System.out.println("找到,下标为=" + index);
		}
	}
	/**
	 * 这里我们实现的线性查找是找到一个满足条件的值,就返回
	 * @param arr
	 * @param value
	 * @return
	 */
	public static int seqSearch(int[] arr, int value) {
		// 线性查找是逐一比对,发现有相同值,就返回下标
		for (int i = 0; i < arr.length; i++) {
			if(arr[i] == value) {
				return i;
			}
		}
		return -1;
	}
}

2 二分查找

2.1 递归形式

只适用于有序数组

二分查找法的运行时间为对数时间O(㏒₂n) ,即查找到需要的目标位置最多只需要㏒₂n步,假设从[0,99]的队列(100个数,即n=100)中寻到目标数30,则需要查找步数为㏒₂100 , 即最多需要查找7次( 2^6 < 100 < 2^7)

思路分析:

1. 首先确定该数组的中间的下标:mid = (left + right) / 2
2. 然后让需要查找的数 findVal 和 arr[mid] 比较:
  2.1 findVal > arr[mid] ,  说明你要查找的数在mid 的右边, 因此需要递归的向右查找。
  2.2 findVal < arr[mid], 说明你要查找的数在mid 的左边, 因此需要递归的向左查找。
  2.3 findVal == arr[mid] 说明找到,就返回。

结束递归的条件:
1. 找到就结束递归 
2. 递归完整个数组,仍然没有找到findVal,也需要结束递归,当 left > right时退出。

代码实现:

import java.util.ArrayList;
import java.util.List;

//注意:使用二分查找的前提是 该数组是有序的.
public class BinarySearch {

	public static void main(String[] args) {
		int arr[] = { 1, 8, 10, 89,1000,1000, 1234 };
		List<Integer> resIndexList = binarySearch(arr, 0, arr.length - 1, 1000);
		System.out.println("resIndexList=" + resIndexList);
	}

	// 二分查找算法
	/**
	 * 
	 * @param arr
	 *            数组
	 * @param left
	 *            左边的索引
	 * @param right
	 *            右边的索引
	 * @param findVal
	 *            要查找的值
	 * @return 如果找到就返回下标,如果没有找到,就返回 -1
	 */
	
	public static List<Integer> binarySearch(int[] arr, int left, int right, int findVal) {
		// 当 left > right 时,说明递归整个数组,但是没有找到
		if (left > right) {
			return new ArrayList<Integer>();
		}
		int mid = (left + right) / 2;
		int midVal = arr[mid];

		if (findVal > midVal) { // 向 右递归
			return binarySearch(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 向左递归
			return binarySearch(arr, left, mid - 1, findVal);
		} else {
			//有多个相同的数值时,如何将所有的数值都查找到
//			 * 思路分析
//			 * 1. 在找到mid 索引值,不要马上返回
//			 * 2. 向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
//			 * 3. 向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
//			 * 4. 将Arraylist返回
			
			List<Integer> resIndexlist = new ArrayList<Integer>();
			//向mid 索引值的左边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
			int temp = mid - 1;
			while(true) {
				if (temp < 0 || arr[temp] != findVal) {//退出
					break;
				}
				//否则,就temp 放入到 resIndexlist
				resIndexlist.add(temp);
				temp -= 1; //temp左移
			}
			resIndexlist.add(mid);  //
			
			//向mid 索引值的右边扫描,将所有满足 1000, 的元素的下标,加入到集合ArrayList
			temp = mid + 1;
			while(true) {
				if (temp > arr.length - 1 || arr[temp] != findVal) {//退出
					break;
				}
				//否则,就temp 放入到 resIndexlist
				resIndexlist.add(temp);
				temp += 1; //temp右移
			}		
			return resIndexlist;
		}
	}
}

2.2 非递归形式

代码实现:

public class BinarySearchNoRecur {
	public static void main(String[] args) {
		//测试
		int[] arr = {1,3, 8, 10, 11, 67, 100};
		int index = binarySearch(arr, 100);
		System.out.println("index=" + index);//
	}	
	//二分查找的非递归实现
	/**
	 * 
	 * @param arr 待查找的数组, arr是升序排序
	 * @param target 需要查找的数
	 * @return 返回对应下标,-1表示没有找到
	 */
	public static int binarySearch(int[] arr, int target) {
		
		int left = 0;
		int right = arr.length - 1;
		while(left <= right) { //说明继续查找
			int mid = (left + right) / 2;
			if(arr[mid] == target) {
				return mid;
			} else if ( arr[mid] > target) {
				right = mid - 1;//需要向左边查找
			} else {
				left = mid + 1; //需要向右边查找
			}
		}
		return -1;
	}
}

3 插值查找

插值查找算法,也针对的是有序数组

插值查找原理介绍:

类似于二分查找,不同的是插值查找每次从自适应mid处开始查找。

将折半查找中的求mid索引的公式变形成下图中右边的形式,其中low表示左边索引left,right表示右边索引right,key就是待查找的元素findVal。

JAVA怎么搜索原地址 java搜索代码_JAVA怎么搜索原地址

插值查找算法举例说明:
数组arr = [1, 2, 3, ......., 100]
假如我们需要查找的值是1 
使用二分查找的话,我们需要多次递归,才能找到1
使用插值查找算法
int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])
int mid = 0 + (99 - 0) * (1 - 1)/ (100 - 1) = 0 + 99 * 0 / 99 = 0 
比如我们查找的值是100
int mid = 0 + (99 - 0) * (100 - 1) / (100 - 1) = 0 + 99 * 99 / 99 = 0 + 99 = 99

插值查找注意事项:
对于数据量较大,关键字分布比较均匀的查找表来说,采用插值查找,速度较快。
关键字分布不均匀的情况下,该方法不一定比折半查找要好。

插值查找代码实现:

import java.util.Arrays;

public class InsertValueSearch {

	public static void main(String[] args) {
		
		int [] arr = new int[100];
		for(int i = 0; i < 100; i++) {
			arr[i] = i + 1;
		}
		
		int index = insertValueSearch(arr, 0, arr.length - 1, 50);
		System.out.println("index = " + index);
		
		//System.out.println(Arrays.toString(arr));
	}
	//编写插值查找算法
	//说明:插值查找算法,也要求数组是有序的
	/**
	 * 
	 * @param arr 数组
	 * @param left 左边索引
	 * @param right 右边索引
	 * @param findVal 查找值
	 * @return 如果找到,就返回对应的下标,如果没有找到,返回-1
	 */
	public static int insertValueSearch(int[] arr, int left, int right, int findVal) { 

		System.out.println("插值查找次数~~");
		
		//注意:findVal < arr[0]  和  findVal > arr[arr.length - 1] 必须需要
		//否则我们得到的 mid 可能越界
		if (left > right || findVal < arr[0] || findVal > arr[arr.length - 1]) {
			return -1;
		}

		// 求出mid, 自适应
		int mid = left + (right - left) * (findVal - arr[left]) / (arr[right] - arr[left]);
		int midVal = arr[mid];
		if (findVal > midVal) { // 说明应该向右边递归
			return insertValueSearch(arr, mid + 1, right, findVal);
		} else if (findVal < midVal) { // 说明向左递归查找
			return insertValueSearch(arr, left, mid - 1, findVal);
		} else {
			return mid;
		}
	}
}

4 斐波那契查找

斐波那契查找算法,也针对的是有序数组

斐波那契查找原理:

与二分查找和插值查找相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示

JAVA怎么搜索原地址 java搜索代码_JAVA怎么搜索原地址_02

由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到(F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1

       斐波那契数列,又称黄金分割数列,指的是这样一个数列:1、1、2、3、5、8、13、21、····,在数学上,斐波那契被递归方法如下定义:F(1)=1,F(2)=1,F(n)=f(n-1)+F(n-2) (n>=2)。该数列越往后相邻的两个数的比值越趋向于黄金比例值(0.618)。
       斐波那契查找就是在二分查找的基础上根据斐波那契数列进行分割的。在斐波那契数列找一个等于略大于查找表中元素个数的数F[n],将原查找表扩展为长度为F[n](如果要补充元素,则补充重复最后一个元素,直到满足F[n]个元素),完成后进行斐波那契分割,即F[n]个元素分割为前半部分F[n-1]个元素,后半部分F[n-2]个元素,找出要查找的元素在那一部分并递归,直到找到。
       斐波那契查找的时间复杂度还是O(log2n),但是与折半查找相比,斐波那契查找的优点是它只涉及加法和减法运算,而不用除法,而除法比加减法要占用更多的时间,因此,斐波那契查找的运行时间理论上比折半查找小,但是还是得视具体情况而定。
       对于斐波那契数列:1、1、2、3、5、8、13、21、34、55、89……(也可以从0开始),前后两个数字的比值随着数列的增加,越来越接近黄金比值0.618。比如这里的89,把它想象成整个有序表的元素个数,而89是由前面的两个斐波那契数34和55相加之后的和,也就是说把元素个数为89的有序表分成由前55个数据元素组成的前半段和由后34个数据元素组成的后半段,那么前半段元素个数和整个有序表长度的比值就接近黄金比值0.618,假如要查找的元素在前半段,那么继续按照斐波那契数列来看,55 = 34 + 21,所以继续把前半段分成前34个数据元素的前半段和后21个元素的后半段,继续查找,如此反复,直到查找成功或失败,这样就把斐波那契数列应用到查找算法中了。

代码实现:

import java.util.Arrays;

public class FibonacciSearch {

	public static int maxSize = 20;
	public static void main(String[] args) {
		int [] arr = {1,8, 10, 89, 1000, 1234};
		
		System.out.println("index=" + fibSearch(arr, 89));// 3	
	}
	//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
	//非递归方法得到一个斐波那契数列
	public static int[] fib() {
		int[] f = new int[maxSize];
		f[0] = 1;
		f[1] = 1;
		for (int i = 2; i < maxSize; i++) {
			f[i] = f[i - 1] + f[i - 2];
		}
		return f;
	}	
	//编写斐波那契查找算法
	//使用非递归的方式编写算法
	/**
	 * 
	 * @param a  数组
	 * @param key 我们需要查找的关键码(值)
	 * @return 返回对应的下标,如果没有-1
	 */
	public static int fibSearch(int[] a, int key) {
		int low = 0;
		int high = a.length - 1;
		int k = 0; //表示斐波那契分割数值的下标
		int mid = 0; //存放mid值
		int f[] = fib(); //获取到斐波那契数列
		//获取到斐波那契分割数值的下标
		while(high > f[k] - 1) {
			k++;
		}
		//因为f[k]值可能大于数组a的长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
		//不足的部分会使用0填充
		int[] temp = Arrays.copyOf(a, f[k]);
		//实际上需求使用a数组最后的数填充 temp
		//举例:
		//temp = {1,8, 10, 89, 1000, 1234, 0, 0}  => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
		for(int i = high + 1; i < temp.length; i++) {
			temp[i] = a[high];
		}
		
		// 使用while来循环处理,找到我们的数 key
		while (low <= high) { // 只要这个条件满足,就可以找
			mid = low + f[k - 1] - 1;
			if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
				high = mid - 1;
				//为什么是k--
				//说明:
				//1. 全部元素 = 前面的元素 + 后边元素
				//2. f[k] = f[k-1] + f[k-2]
				//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
				//即 在 f[k-1] 的前面继续查找 k--
				//即下次循环 mid = f[k-1-1]-1
				k--;
			} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
				low = mid + 1;
				//为什么是k-=2
				//说明:
				//1. 全部元素 = 前面的元素 + 后边元素
				//2. f[k] = f[k-1] + f[k-2]
				//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-2] = f[k-3] + f[k-4]
				//4. 即在f[k-2] 的前面进行查找 k -=2
				//5. 即下次循环 mid = f[k - 1 - 2] - 1
				k -= 2;
			} else { //找到
				//需要确定,返回的是哪个下标
				if(mid <= high) {
					return mid;
				} else {
					return high;
				}
			}
		}
		return -1;
	}
}