1.df.loc[[index],[colunm]] 通过标签选择数据
loc
需要两个单/列表/范围运算符,用","
分隔。第一个表示行,第二个表示列
(1)获取指定列的数据
df.loc[:,'reviews'] 注意: 第一个参数为:表示所有行,第2个参数为列名,设置获取review列的数据
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_05.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos','review_fenci_pos']
df.columns=columns_name
print(df.head(3)) #输出前3行
print (df.loc[:,'reviews'].head(3))
控制台输出:
(2)选择指定的多行多列
df.loc[[0,2],['customername','reviews','review_fenci']] 参数说明: [0,2] 这个列表有两个元素0,2表示选择第0行和第2行,['customername','reviews','review_fenci']这个列表有3个元素表示选择列名为'customername','reviews','review_fenci‘的这3列
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_05.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos','review_fenci_pos']
df.columns=columns_name
print(df.head(3)) #输出前3行
print (df.loc[[0,2],['customername','reviews','review_fenci']])
控制台输出:
2.df.iloc[[index],[colunm]] 通过位置选择数据
(1)选择一列,以Series的形式返回列
(2)选择两列或两列以上,以DataFrame形式返回多列
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_05.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos','review_fenci_pos']
df.columns=columns_name
print(df.head(3)) #输出前3行
print (df.iloc[[0,2],[1,2]])
控制台输出:
3.df[['列名1','列名2']]
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_05.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos','review_fenci_pos']
df.columns=columns_name
print(df.head(3)) #输出前3行
print (df[['customername','reviews']])
控制台输出:
4.按若干个列的组合条件筛选数据
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_05.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos']
df.columns=columns_name
print(df.head(5)) #输出前3行
print (df[(df['mysql_id']==201)&(df['aspectflag']==0.0)&(df['review_pos']==3)])
控制台输出:
5.筛选某列中值大于n的数据且给另一列的空值填充数据
import pandas as pd
df=pd.read_csv('../hotel_csv_split/reviews_split_fenci_pos_1_15256.csv',header=None,nrows=5)
#在读数之后自定义标题
columns_name=['mysql_id','hotelname','customername','reviews','aspectflag','review_fenci','review_pos','review_fenci_pos']
df.columns=columns_name
print(df.head(3)) #输出前3行
df1 = df[df['aspectflag']==1.0].copy() #df['aspectflag']==1.0
df1['review_pos']=df1['review_pos'].fillna('n/adj')
print(df1.head(3))
控制台输出:
注意:
df1 = df[df['aspectflag']==1.0].copy()
链式赋值是链式索引和赋值的组合。
典例:
data[data.bidder == 'parakeet2004']['bidderrate'] = 100
其中:data[data.bidder == 'parakeet2004'] 作用是从数据表中筛选出bidder列值为parakeet2004的数据,['bidderrate']获取前面筛选的列
这种类似的写法会有警告:
A value is trying to be set on a copy of a slice from aDataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation:http://Pandas.pydata.org/Pandas-docs/stable/indexinghtml#indexing-view-versus-copy
解决方案:拆为两部分,前面一部分使用copy(),生成一个副本。
6.dataframe新增一行
#创建一个空字典
pos_dict = {}
#往字典里添加一组新的key和value
pos_dict['pos'] = pos
pos_dict['count'] = count
# print(pos_dict)
df = df.append([pos_dict],ignore_index=True) #给dataframe添加新的一行
7.dataframe选择多列,并在指定位置插入一列
import os
import pandas as pd
#读取csv文件的前200行,将其存储为另一个文件
df=pd.read_csv('../csvfiles/hotelreviews_fenci_pos.csv',header=None,nrows=10)
columns_name=['mysql_id','hotelname','customername','reviewtime','checktime','reviews','scores','type','room','useful','likenumber','review_split','review_pos','review_split_pos']
df.columns=columns_name
#获取dataframe表中的指定多列
df1=pd.DataFrame(df,columns=['mysql_id','hotelname','customername','reviews','review_split'])
col_name = df1.columns.tolist()
# 在reviews列后面插入列名为keywords的列
col_name.insert(col_name.index('reviews')+1,'keywords')
df2=df1.reindex(columns=col_name)
df2.to_csv('../csvfiles/reviews_split_200_keywords.csv', header=None, index=False)
8.读取指定某些行
pd.read_csv(路径,skiprows=需要忽略的行数,nrows=你想要读的行数)
比如你想读中间第10行-20行的内容
pd.read_csv(路径,skiprows=9,nrows=10),忽略前9行,往下读10行
def dev_csv():
df = pd.read_csv('../aspect_ner_csv_files/sentence_15000.csv', header=None,nrows=2683,skiprows=10256)
columns_name = ['mysql_id', 'reviews']
df.columns = columns_name
review_csv_count_path = '../aspect_ner_csv_files/sentence_dev.csv'
df.to_csv(review_csv_count_path, header=None,
index=False) # header=None指不把列号写入csv当中