最近把OpenVINO升级到了最新版本(超级不喜欢openvino这点,每次升级都要换几个接口,虽说API会向前兼容几个版本,不过跟起来真累啊,OpenCV, FFMPEG也是这样,是不是开源项目都是这么玩的啊... ) 顺便来试试看最新版本的OpenVINO对图像超分的模型支持的怎么样。
先从FSRCNN 开始,毕竟这是图像超分的经典模型,运算量小推理速度快,超分效果又好。
从https:///Saafke/FSRCNN_Tensorflow上看具体的实现,FSRCNN模型是针对图像的Y通道做处理,先除以255.0转到[0,1]的浮点,然后做2倍的超分,推理输出乘以255.0,并且clip(0,255)作为输出Y通道,对于Cb,Cr通道直接做bicubic 2X放大,最后组合成BGR图像输出
def upscale(self, path):
"""
Upscales an image via model.
"""
img = cv2.imread(path, 3)
#BGR转YCbCr
img_ycc = cv2.cvtColor(img, cv2.COLOR_BGR2YCrCb)
img_y = img_ycc[:,:,0]
#Y通道转为[0,1]之间的浮点
floatimg = img_y.astype(np.float32) / 255.0
LR_input_ = floatimg.reshape(1, floatimg.shape[0], floatimg.shape[1], 1)
with tf.Session(config=self.config) as sess:
print("\nUpscale image by a factor of {}:\n".format(self.scale))
# load and run
ckpt_name = self.ckpt_path + "fsrcnn_ckpt" + ".meta"
saver = tf.train.import_meta_graph(ckpt_name)
saver.restore(sess, tf.train.latest_checkpoint(self.ckpt_path))
graph_def = sess.graph
LR_tensor = graph_def.get_tensor_by_name("IteratorGetNext:0")
HR_tensor = graph_def.get_tensor_by_name("NHWC_output:0")
#推理
output = sess.run(HR_tensor, feed_dict={LR_tensor: LR_input_})
# post-process
Y = output[0]
#输出数据Y通道乘255.0, clip到[0,255]之间
Y = (Y * 255.0).clip(min=0, max=255)
Y = (Y).astype(np.uint8)
#Cb,Cr做Bicubic插值放大
# Merge with Chrominance channels Cr/Cb
Cr = np.expand_dims(cv2.resize(img_ycc[:,:,1], None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC), axis=2)
Cb = np.expand_dims(cv2.resize(img_ycc[:,:,2], None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC), axis=2)
#YCbCr转BGR
HR_image = (cv2.cvtColor(np.concatenate((Y, Cr, Cb), axis=2), cv2.COLOR_YCrCb2BGR))
bicubic_image = cv2.resize(img, None, fx=self.scale, fy=self.scale, interpolation=cv2.INTER_CUBIC)
cv2.imshow('Original image', img)
cv2.imshow('HR image', HR_image)
cv2.imshow('Bicubic HR image', bicubic_image)
cv2.waitKey(0)
sess.close()
对于openvino实现来说,所有的超分模型,只要Module Optimizer能正确的转换,那么推理部分基本都没什么问题,需要考虑的就是输入给模型的数据预处理部分,是丢进去[0,1]之间的浮点,还是[-1,1]的浮点,输入数据要不要叠加mean/shift的计算, 这部分预处理可以在MO转IR模型时候通过参数丢给IR模型,让IE去做;以及输出部分的浮点怎么转换到[0,255]之间的RGB/YUV像素,这部分需要自己实现代码手工处理。
开始MO转换, 我希望输入图像分辨率大一点,所以定义输入尺寸为640x480, 这样输出的图片尺寸在1280x960. 通过scale_value=[255.0]告诉IE在计算时每个输入数据要除以255.0
C:\temp_20151027\FSRCNN_Tensorflow-master\models>python "c:\Program Files (x86)\IntelSWTools\openvino_2021\deployment_tools\model_optimizer\mo_tf.py" --scale_values=[255.0] --input_shape=[1,480,640,1] --input_model=FSRCNN_x2.pb --data_type FP16 --output=NHWC_output
接下来是C++代码的实现,借用了前一篇文章 OpenVINO 2020r3 体验GPU Remote Blob API 里推理的代码,只是在最后处理输出outputblob的地方换成转换像素的代码
/*
loadjpg将彩色图像变成灰度图像
static void loadjpg(const char * jpgname, int width, int height)
{
//loadimage(&jpg, jpgname);//
cv::Mat jpg_2x;
jpg = cv::imread(jpgname);
cout << "load image: " << jpgname << " resize: w=" << width << " h=" << height << endl;
//resize to width*height
std::cout << "convert img to Gray" << std::endl;
cv::cvtColor(jpg, jpg, cv::COLOR_BGR2GRAY); //COLOR_BGR2YCrCb or COLOR_BGR2YUV
cv::resize(jpg, jpg, cv::Size(width, height), 0, 0, cv::INTER_CUBIC);
cv::resize(jpg, jpg_2x, cv::Size(width * 2, height * 2), 0, 0, cv::INTER_CUBIC);
cv::imshow("bic_2x", jpg_2x);
cv::imwrite("palace_gray_bic_2x.png", jpg_2x);
}
*/
string FLAGS_d = "GPU"; //"CPU"; 选择用CPU还是GPU推理
string FLAGS_m = "C:\\work\\opencl_2020\\cmake_fsrcnn_ov2021\\src\\FSRCNN_x2_FP16.xml";
string FLAGS_i = "C:\\work\\opencl_2020\\cmake_fsrcnn_ov2021\\src\\palace.jpg";
int FLAGS_nt = 10;
cout << "starting" << endl;
const Version *IEversion;
IEversion = GetInferenceEngineVersion();
cout << "InferenceEngine: API version " << IEversion->apiVersion.major << "." << IEversion->apiVersion.minor << endl;
cout << "InferenceEngine: Build : " << IEversion->buildNumber << endl << endl;
// --------------------------- 1. Load inference engine -------------------------------------
cout << "Creating Inference Engine" << endl;
Core ie;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------
cout << "Loading network files" << endl;
/** Read network model **/
CNNNetwork network = ie.ReadNetwork(FLAGS_m);
cout << "network layer count: " << network.layerCount() << endl;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 3. Configure input & output ---------------------------------------------
// --------------------------- Prepare input blobs -----------------------------------------------------
cout << "Preparing input blobs" << endl;
/** Taking information about all topology inputs **/
InputsDataMap inputInfo(network.getInputsInfo());
if (inputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 input only");
auto inputInfoItem = *inputInfo.begin();
/** Specifying the precision and layout of input data provided by the user.
* This should be called before load of the network to the device **/
inputInfoItem.second->setPrecision(Precision::U8);
inputInfoItem.second->setLayout(Layout::NCHW);
//cout << FLAGS_i << endl;
//loadjpg将RGB图像转换成灰度图像,这样比较简单
loadjpg(FLAGS_i.c_str(), inputInfoItem.second->getTensorDesc().getDims()[3],
inputInfoItem.second->getTensorDesc().getDims()[2]);
if (jpg.data == NULL)
{
cout << "Valid input images were not found!" << endl;
}
/** Setting batch size to 1 **/
network.setBatchSize(1);
size_t batchSize = network.getBatchSize();
cout << "Batch size is " << std::to_string(batchSize) << endl;
// --------------------------- 4. Loading model to the device ------------------------------------------
cout << "Loading model to the device: " << FLAGS_d << endl;
ExecutableNetwork executable_network = ie.LoadNetwork(network, FLAGS_d);
// -----------------------------------------------------------------------------------------------------
// --------------------------- 5. Create infer request -------------------------------------------------
cout << "Create infer request" << endl;
InferRequest inferRequest_regular = executable_network.CreateInferRequest();
// -----------------------------------------------------------------------------------------------------
// --------------------------- 6. Prepare input --------------------------------------------------------
for (auto & item : inputInfo) {
Blob::Ptr inputBlob = inferRequest_regular.GetBlob(item.first);
SizeVector dims = inputBlob->getTensorDesc().getDims();
/** Fill input tensor with images. First b channel, then g and r channels **/
size_t num_channels = dims[1];
std::cout << "num_channles = " << num_channels << std::endl;
size_t image_size = dims[3] * dims[2];
MemoryBlob::Ptr minput = as<MemoryBlob>(inputBlob);
if (!minput) {
cout << "We expect MemoryBlob from inferRequest_regular, but by fact we were not able to cast inputBlob to MemoryBlob" << endl;
return 1;
}
// locked memory holder should be alive all time while access to its buffer happens
auto minputHolder = minput->wmap();
auto data = minputHolder.as<PrecisionTrait<Precision::U8>::value_type *>();
unsigned char* pixels = (unsigned char*)(jpg.data);
cout << "image_size = " << image_size << endl;
/** Iterate over all pixel in image (b,g,r) **/
//将Mat数据转换给inputBlob
for (size_t pid = 0; pid < image_size; pid++) {
/** Iterate over all channels **/
for (size_t ch = 0; ch < num_channels; ++ch) {
/** [images stride + channels stride + pixel id ] all in bytes **/
data[ch * image_size + pid] = pixels[pid*num_channels + ch];
}
}
}
milliseconds start_ms = duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
);
// --------------------------- 7. Do inference ---------------------------------------------------------
#if 0
//for async inference
size_t numIterations = 10;
size_t curIteration = 0;
std::condition_variable condVar;
inferRequest_regular.SetCompletionCallback(
[&] {
curIteration++;
cout << "Completed " << curIteration << " async request execution" << endl;
if (curIteration < numIterations) {
/* here a user can read output containing inference results and put new input
to repeat async request again */
inferRequest_regular.StartAsync();
}
else {
/* continue sample execution after last Asynchronous inference request execution */
condVar.notify_one();
}
});
/* Start async request for the first time */
cout << "Start inference (" << numIterations << " asynchronous executions)" << endl;
inferRequest_regular.StartAsync();
/* Wait all repetitions of the async request */
std::mutex mutex;
std::unique_lock<std::mutex> lock(mutex);
condVar.wait(lock, [&] { return curIteration == numIterations; });
#else
/* Start sync request */
cout << "Start inference " << endl;
inferRequest_regular.Infer();
#endif
milliseconds end_ms = duration_cast<milliseconds>(
system_clock::now().time_since_epoch()
);
std::cout << "total cost time: " << (end_ms - start_ms).count() << " ms" << std::endl;
float total_time = (end_ms - start_ms).count() / 1000.0;
std::cout << "FPS: " << (float)1.0 / total_time << std::endl;
// -----------------------------------------------------------------------------------------------------
// --------------------------- 8. Process output -------------------------------------------------------
cout << "Processing output blobs" << endl;
OutputsDataMap outputInfo(network.getOutputsInfo());
cout << "output blob name: " << outputInfo.begin()->first << endl;
if (outputInfo.size() != 1) throw std::logic_error("Sample supports topologies with 1 output only");
MemoryBlob::CPtr moutput = as<MemoryBlob> (inferRequest_regular.GetBlob(outputInfo.begin()->first));
/** Validating -nt value **/
const size_t resultsCnt = moutput->size() / batchSize;
if (FLAGS_nt > resultsCnt || FLAGS_nt < 1) {
cout << "-nt " << FLAGS_nt << " is not available for this network (-nt should be less than " \
<< resultsCnt + 1 << " and more than 0)\n will be used maximal value : " << resultsCnt << endl;
FLAGS_nt = resultsCnt;
}
if (!moutput) {
throw std::logic_error("We expect output to be inherited from MemoryBlob, "
"but by fact we were not able to cast it to MemoryBlob");
}
// locked memory holder should be alive all time while access to its buffer happens
auto lmoHolder = moutput->rmap();
const auto output_data = lmoHolder.as<const PrecisionTrait<Precision::FP32>::value_type *>();
size_t num_images = moutput->getTensorDesc().getDims()[0];
size_t num_channels = moutput->getTensorDesc().getDims()[1];
size_t H = moutput->getTensorDesc().getDims()[2];
size_t W = moutput->getTensorDesc().getDims()[3];
size_t nPixels = W * H;
//处理outputBlob, 将输出浮点数转换成像素
std::cout << "Output size [N,C,H,W]: " << num_images << ", " << num_channels << ", " << H << ", " << W << std::endl;
{
std::vector<float> data_img(nPixels * num_channels);
if (num_channels == 1)
{
cv::Mat Img(H, W, CV_8U);
unsigned char *image_ptr = Img.data;
for (size_t n = 0; n < num_images; n++) {
for (size_t i = 0; i < nPixels; i++) {
data_img[i ] = static_cast<float>(output_data[i + n * nPixels ])*255.0;
//std::cout << "i:" << i << " data:" << data_img[i] << std::endl;
if (data_img[i ] < 0) data_img[i ] = 0;
if (data_img[i ] > 255) data_img[i ] = 255;
image_ptr[i] = data_img[i];
}
}
imshow("FSRCNN_2x", Img);
cv::imwrite("palace_FSRCNN_gray_2x.png", Img);
std::cout << "Output Image created" << std::endl;
}
最终得到输出结果
原始图片(测试图片来自网络)
Bicubic的2x放大效果
FSRCNN 2X效果
最终调用inferRequest_regular.Infer()推理的时间, 在我的8665U 4核8线程的CPU和 Gen9 24EU的核显上
CPU: 68ms (14.71FPS)
GPU: 48ms (20.83FPS)
基本上在8代CPU的核显上能到20fps, 如果换到现在主流平台的11代Tigerlake的Gen12 96EU上, 预计性能翻个3倍应该没问题,到时候应该能用FSRCNN来做个老电影AI修复的实时播放器
最后源码奉上,仅供参考
https://gitee.com/tisandman/fsrcnn_ov2021