按照损失函数的负梯度成比例地对系数(W 和 b)进行更新。根据训练样本的大小,有三种梯度下降的变体:

  1. Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度。该方法可能很慢并且难以处理非常大的数据集。该方法能保证收敛到凸损失函数的全局最小值,但对于非凸损失函数可能会稳定在局部极小值处。
  2. 随机梯度下降:在随机梯度下降中,一次提供一个训练样本用于更新权重和偏置,从而使损失函数的梯度减小,然后再转向下一个训练样本。整个过程重复了若干个循环。由于每次更新一次,所以它比 Vanilla 快,但由于频繁更新,所以损失函数值的方差会比较大。
  3. 小批量梯度下降:该方法结合了前两者的优点,利用一批训练样本来更新参数。

TensorFlow优化器的使用

首先确定想用的优化器。TensorFlow 为你提供了各种各样的优化器:

  • 这里从最流行、最简单的梯度下降优化器开始:

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_tensorflow设置全局随机种子

  • GradientDescentOptimizer 中的 learning_rate 参数可以是一个常数或张量。它的值介于 0 和 1 之间。

    必须为优化器给定要优化的函数。使用它的方法实现最小化。该方法计算梯度并将梯度应用于系数的学习。该函数在 TensorFlow 文档中的定义如下:
  • tensorflow设置全局随机种子 tensorflow随机梯度下降_随机梯度下降_02

  • 综上所述,这里定义计算图:
  • tensorflow设置全局随机种子 tensorflow随机梯度下降_梯度下降_03

  • 馈送给 feed_dict 的 X 和 Y 数据可以是 X 和 Y 个点(随机梯度)、整个训练集(Vanilla)或成批次的。
  • 梯度下降中的另一个变化是增加了动量项。为此,使用优化器 tf.train.MomentumOptimizer()。它可以把 learning_rate 和 momentum 作为初始化参数:

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_损失函数_04

  •  
  • 可以使用 tf.train.AdadeltaOptimizer() 来实现一个自适应的、单调递减的学习率,它使用两个初始化参数 learning_rate 和衰减因子 rho:

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_随机梯度下降_05

  •  
  • TensorFlow 也支持 Hinton 的 RMSprop,其工作方式类似于 Adadelta 的 tf.train.RMSpropOptimizer():

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_损失函数_06

  • Adadelta 和 RMSprop 之间的细微不同可参考 http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 和 https://arxiv.org/pdf/1212.5701.pdf
  • 另一种 TensorFlow 支持的常用优化器是 Adam 优化器。该方法利用梯度的一阶和二阶矩对不同的系数计算不同的自适应学习率:

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_损失函数_07

  •  
  • 除此之外,TensorFlow 还提供了以下优化器:

  • tensorflow设置全局随机种子 tensorflow随机梯度下降_tensorflow设置全局随机种子_08


  •