工具篇:EXCEL与python的对比 如何处理数据表
第4章 数据预处理
本章主要讲的是数据的预处理,对清洗完的数据进行整理以便后期的统计和分析工作。
主要包括数据表的合并,排序,数值分列,数据分组及标记等工作
1. 数据表合并
首先是对不同的数据表进行合并,我们这里创建一个新的数据表df1,并将df和df1两个数据表进行合并。
在Excel中没有直接完成数据表合并的功能,可以通过VLOOKUP函数分步实现。
在Python中可以通过merge函数一次性实现。下面建立df1数据表,用于和df数据表进行合并
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
使用merge函数对两个数据表进行合并,合并的方式为inner,将两个数据表中共有的数据匹配到一起生成新的数据表。并命名为df_inner。
#数据表匹配合并
df_inner=pd.merge(df,df1,how='inner')
除了inner方式以外,合并的方式还有left,right和outer方式。这几种方式的差别在我其他的文章中有详细的说明和对比。
df_left=pd.merge(df,df1,how='left')
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer')
2. 设置索引列
EXCEL没有索引列概念
python完成数据表的合并后,我们对df_inner数据表设置索引列,索引列的功能很多,可以进行数据提取,汇总,也可以进行数据筛选等。设置索引的函数为set_index。
#设置索引列
df_inner.set_index('id')
3. 排序(按索引,按数值)
Excel中可以通过数据目录下的排序按钮直接对数据表进行排序,比较简单。
Python中需要使用ort_values函数和sort_index函数完成排序
在Python中,既可以按索引对数据表进行排序,也可以看制定列的数值进行排序。
首先我们按age列中用户的年龄对数据表进行排序。使用的函数为sort_values。
#按特定列的值排序
df_inner.sort_values(by=['age'])
Sort_index函数用来将数据表按索引列的值进行排序。
#按索引列排序
df_inner.sort_index()
4. 数据分组
Excel中可以通过VLOOKUP函数进行近似匹配来完成对数值的分组,或者使用“数据透视表”来完成分组。
相应的 Python中使用where函数完成数据分组。
Where函数用来对数据进行判断和分组,下面的代码中我们对price列的值进行判断,将符合条件的分为一组,不符合条件的分为另一组,并使用group字段进行标记。
#如果price列的值>3000,group列显示high,否则显示low
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')
除了where函数以外,还可以对多个字段的值进行判断后对数据进行分组,下面的代码中对city列等于beijing并且price列大于等于4000的数据标记为1。
#对复合多个条件的数据进行分组标记
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1
5. 数据分列
与数据分组相反的是对数值进行分列,Excel中的数据目录下提供“分列”功能。
在Python中使用split函数实现分列
在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。我们使用split函数对这个字段进行拆分,并将拆分后的数据表匹配回原数据表中。
#对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size'])
#将完成分列后的数据表与原df_inner数据表进行匹配
df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)