我在Windows下训练自己数据集时遇到了很严重的问题,明明训练的loss收敛的很漂亮,但是检测出来的结果要么是mAP很低不超过0.5,要么就是所有的mAP一直为同一个非常低的值。
针对这个问题,我曾经以为:
1)用Python3导致与Faster R-CNN的版本不一致,没有用!!
2) 数据集质量不高:数量太少,图片分辨率不够,图片大小不符合要求,也是没有用!!
3)clone to Faster R-CNN时文件有遗漏,并没有!!!
这个博客完全拯救了我:
按照这个博客的步骤完全能够一一实现,为了防止博客被删,以及结合自己遇到的问题,还是整理一下。
开始训练自己的数据集:
一、制作自己的数据集:
1.训练数据集的要求 :不论你是网上找的图片或者你用别人的数据集,记住一点你的图片不能太小,width和height最好不要小于150。需要是jpeg的图片。【这一点很重要,会影响训练出来的model效果】
2.制作.xml文件:
1)采用的是Lambell【因为我是自己的数据集,数据及不大,所以我自己手动标注数据了】
2)上面博客里还写里一个大数据集情况下,生成.xml文件的代码,我还没有试过,先贴上:
def write_xml(bbox,w,h,iter):
'''
bbox为你保存的当前图片的类别的信息和对应坐标的dict
w,h为你当前保存图片的width和height
iter为你图片的序号
'''
root=Element("annotation")
folder=SubElement(root,"folder")#1
folder.text="JPEGImages"
filename=SubElement(root,"filename")#1
filename.text=iter
path=SubElement(root,"path")#1
path.text='D:\\py-faster-rcnn\\data\\VOCdevkit2007\\VOC2007\\JPEGImages'+'\\'+iter+'.jpg'#把这个路径改为你的路径就行
source=SubElement(root,"source")#1
database=SubElement(source,"database")#2
database.text="Unknown"
size=SubElement(root,"size")#1
width=SubElement(size,"width")#2
height=SubElement(size,"height")#2
depth=SubElement(size,"depth")#2
width.text=str(w)
height.text=str(h)
depth.text='3'
segmented=SubElement(root,"segmented")#1
segmented.text='0'
for i in bbox:
object=SubElement(root,"object")#1
name=SubElement(object,"name")#2
name.text=i['cls']
pose=SubElement(object,"pose")#2
pose.text="Unspecified"
truncated=SubElement(object,"truncated")#2
truncated.text='0'
difficult=SubElement(object,"difficult")#2
difficult.text='0'
bndbox=SubElement(object,"bndbox")#2
xmin=SubElement(bndbox,"xmin")#3
ymin=SubElement(bndbox,"ymin")#3
xmax=SubElement(bndbox,"xmax")#3
ymax=SubElement(bndbox,"ymax")#3
xmin.text=str(i['xmin'])
ymin.text=str(i['ymin'])
xmax.text=str(i['xmax'])
ymax.text=str(i['ymax'])
xml=tostring(root,pretty_print=True)
file=open('D:/py-faster-rcnn/data/VOCdevkit2007/VOC2007/Annotations/'+iter+'.xml','w+')#这里的路径也改为你自己的路径
file.write(xml)
3.划分训练、测试、验证数据集:【博客中给出的是MATLAB代码,但我没有安装我用的是Python代码,如下】:
import os
import random
trainval_percent = 0.7
train_percent = 0.7
xmlfilepath = '..\\data\\VOCdevkit2007\\VOC2007\\Annotations'
#..\\指的是你存放的faster r-cnn的地址
txtsavepath ='..\\data\\VOCdevkit2007\\VOC2007\\ImageSets\\Main'
total_xml = os.listdir(xmlfilepath)
num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr)
ftrainval = open('..\\data\\VOCdevkit2007\\VOC2007\\ImageSets\\Main\\trainval.txt', 'w')
ftest=open('..\\data\\VOCdevkit2007\\VOC2007\\ImageSets\\Main\\test.txt', 'w')
ftrain = open('..\\data\\VOCdevkit2007\\VOC2007\\ImageSets\\Main\\train.txt', 'w')
fval = open('..\\data\\VOCdevkit2007\\VOC2007\\ImageSets\\Main\\val.txt', 'w')
for i in list:
name=total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest .close()
4.数据集存放的位置:..\data\VOCdevkit2007\VOC2007\下
Annotations | .xml文件 |
ImageSets->Main | (trainval、train、val、test).txt文件 |
JPEGImages | .jpg文件 |
二、修改适合自己数据集的训练代码【以vgg_cnn_m_1024为例】
1.prototxt文件【打开:models\pascal_voc\VGG_CNN_M_1024\faster_rcnn_end2end\】
1)train.prototxt文件【四处:input-data、roi-data、cls_score、bbox_pred】
layer {
name: 'input-data'
type: 'Python'
top: 'data'
top: 'im_info'
top: 'gt_boxes'
python_param {
module: 'roi_data_layer.layer'
layer: 'RoIDataLayer'
param_str: "'num_classes': 3" #这里改为你训练类别数+1
}
}
layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'
layer: 'ProposalTargetLayer'
param_str: "'num_classes': 3" #这里改为你训练类别数+1
}
}
layer {
name: "cls_score"
type: "InnerProduct"
bottom: "fc7"
top: "cls_score"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 3 #这里改为你训练类别数+1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "bbox_pred"
type: "InnerProduct"
bottom: "fc7"
top: "bbox_pred"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 12 #这里改为你的(类别数+1)*4
weight_filler {
type: "gaussian"
std: 0.001
}
bias_filler {
type: "constant"
value: 0
}
}
}
2)test.prototxt文件
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "cls_score"
type: "InnerProduct"
bottom: "fc7"
top: "cls_score"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 3 #这里改为你训练类别数+1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "bbox_pred"
type: "InnerProduct"
bottom: "fc7"
top: "bbox_pred"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 12 #这里改为你的(类别数+1)
weight_filler {
type: "gaussian"
std: 0.001
}
bias_filler {
type: "constant"
value: 0
}
}
}
2.imdb.py【打开:lib\datasets\】两处修改
def append_flipped_images(self):
num_images = self.num_images
widths = [PIL.Image.open(self.image_path_at(i)).size[0]
for i in xrange(num_images)] #修改这里
for i in xrange(num_images):
boxes = self.roidb[i]['boxes'].copy()
oldx1 = boxes[:, 0].copy()
oldx2 = boxes[:, 2].copy()
boxes[:, 0] = widths[i] - oldx2 - 1
boxes[:, 2] = widths[i] - oldx1 - 1
for b in range(len(boxes)):
if boxes[b][2]< boxes[b][0]:
boxes[b][0] = 0 #修改这里
assert (boxes[:, 2] >= boxes[:, 0]).all()
entry = {'boxes' : boxes,
'gt_overlaps' : self.roidb[i]['gt_overlaps'],
'gt_classes' : self.roidb[i]['gt_classes'],
'flipped' : True}
self.roidb.append(entry)
self._image_index = self._image_index * 2
3.修改RPN层的5个文件
在如下目录下,将文件中param_str_全部改为param_str【你不改也会报错,根据报错的位置修改也行,反正麻烦点QAQ】
4.修改pascal_voc.py文件:
1)在self.classes这里,'__background__'使我们的背景类,不要动他。下面的改为你自己标签的内容。
def __init__(self, image_set, year, devkit_path=None):
imdb.__init__(self, 'voc_' + year + '_' + image_set)
self._year = year
self._image_set = image_set
self._devkit_path = self._get_default_path() if devkit_path is None \
else devkit_path
self._data_path = os.path.join(self._devkit_path, 'VOC' + self._year)
self._classes = ('__background__', # always index 0
'face')
#修改类别
self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes)))
self._image_ext = '.jpg'
self._image_index = self._load_image_set_index()
# Default to roidb handler
self._roidb_handler = self.selective_search_roidb
self._salt = str(uuid.uuid4())
self._comp_id = 'comp4'
2)修改以下2段内容。否则你的test部分一定会出问题
def _get_voc_results_file_template(self):
# VOCdevkit/results/VOC2007/Main/<comp_id>_det_test_aeroplane.txt
filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt'
path = os.path.join(
self._devkit_path,
'VOC' + self._year,
'Main',
'{}' + '_test.txt')
return path
def _write_voc_results_file(self, all_boxes):
for cls_ind, cls in enumerate(self.classes):
if cls == '__background__':
continue
print 'Writing {} VOC results file'.format(cls)
filename = self._get_voc_results_file_template().format(cls)
with open(filename, 'w+') as f:
for im_ind, index in enumerate(self.image_index):
dets = all_boxes[cls_ind][im_ind]
if dets == []:
continue
# the VOCdevkit expects 1-based indices
for k in xrange(dets.shape[0]):
f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
format(index, dets[k, -1],
dets[k, 0] + 1, dets[k, 1] + 1,
dets[k, 2] + 1, dets[k, 3] + 1))
5.修改config.py:【这个文件里还可以修改其他数据,比如说训练几次保存model等等】
将训练和测试的proposals改为gt
# Train using these proposals
__C.TRAIN.PROPOSAL_METHOD = 'gt'
# Test using these proposals
__C.TEST.PROPOSAL_METHOD = 'gt
三、开始训练:
1.删除cache文件:每次训练前将data\cache 和 data\VOCdevkit2007\annotations_cache中的文件删除。
【我一直都没有看见过annotations_cache】
2.开始训练:在py-faster-rcnn的根目录下打开git bash输入【需要你下载git】
./experiments/scripts/faster_rcnn_end2end.sh 0 VGG_CNN_M_1024 pascal_voc
出现如下结果就是开始训练成功惹!!!【当然你可以去experiments\scripts\faster_rcnn_end2end.sh中调自己的训练的一些参数,也可以中VGG16、ZF模型去训练。】
四、测试
创建自己的demo.py,将你要测试的图片写在im_names里,并把图片放在data\demo这个文件夹下。
CLASSES = ('__background__',
'face')
NETS = {'vgg16': ('VGG16',
'VGG16_faster_rcnn_final.caffemodel'),
'vgg1024':('VGG_CNN_M_1024',#这里是我自己的model
'vgg_cnn_m_1024_faster_rcnn_iter_1500.caffemodel'),
'zf': ('ZF',
'ZF_faster_rcnn_final.caffemodel')}
if __name__ == '__main__':
cfg.TEST.HAS_RPN = True # Use RPN for proposals
args = parse_args()
prototxt = os.path.join(cfg.MODELS_DIR, NETS[args.demo_net][0],
'faster_rcnn_end2end', 'test.prototxt')
#这里要修改成我们使用的Prototxt文件
caffemodel = os.path.join(cfg.DATA_DIR, 'faster_rcnn_models',
NETS[args.demo_net][1])
if not os.path.isfile(caffemodel):
raise IOError(('{:s} not found.\nDid you run ./data/script/'
'fetch_faster_rcnn_models.sh?').format(caffemodel))
if args.cpu_mode:
caffe.set_mode_cpu()
else:
caffe.set_mode_gpu()
caffe.set_device(args.gpu_id)
cfg.GPU_ID = args.gpu_id
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
print '\n\nLoaded network {:s}'.format(caffemodel)
# Warmup on a dummy image
im = 128 * np.ones((300, 500, 3), dtype=np.uint8)
for i in xrange(2):
_, _= im_detect(net, im)
im_names = ['000542.jpg', '001150.jpg','004545(1).jpg', '004545.jpg']
#你自己要检测的图片
for im_name in im_names:
print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'
print 'Demo for data/demo/{}'.format(im_name)
demo(net, im_name)
plt.show()
2.测试自己的model:
将output\里你刚刚训练好的caffemodel复制到data\faster_rcnn_models,运行自己的demo.py文件就可以了
五、结果
给出我的结果,这是我随便找的数据集用来检测face:【此处是张艺兴,哈哈哈哈,我男神】
有一点要注意,这里我的阈值是0.5 ,是因为我当初找错误时改的没改回来,反正阈值可以随便调啦
【框好像大了点,因为我只用了200张图片,看模型也可以看出来,只训练了1500次左右,也有可能是我标定框的时候就标定的有些大,这些都可以调整】
六、遇到的问题
1、AttributeError: 'module' object has no attribute 'text_format'
解决方案:在 ../lib/fast_rcnn/train.py增加一行import google.protobuf.text_format
2.F0615 14:53:28.416858 4384 smooth_L1_loss_layer.cpp:24] Check failed: bottom[0] ->channels() == bottom[1]->channels() (12 vs. 84)
解决方案:一般都是end2end中的train.prototxt的类别没有改好导致的。
检查train.prototx中的input-data层的num_classes:n (自己要训练的类别+1,1代表背景)
roi-data层的num_classes:n
cls_score层的num_output:n
bbox_preda层的num_output:4*n。
3.F0615 14:58:38.421589 7596 net.cpp:757] Cannot copy param 0 weights from layer ‘cls_score’; shape mismatch. Source param shape is 21 4096 (86016); target param shape is 3 4096 (12288). To learn this layer’s parameters from scratch rather than copying from a saved net, rename the layer.
解决方法:我是在训练过程中遇到的问题,所以将train.ptototxt相应的cls_score重新命名了:cls_score1
bbox_pred层也是一样重新命名就好
4.TypeError: 'numpy.float64' object cannot be interpreted as an index
因为numpy版本高导致的。个人倾向于改代码而不是降低numpy版本。
1) /home/xxx/py-faster-rcnn/lib/roi_data_layer/minibatch.py
将第26行:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)
改为:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)
2)/home/xxx/py-faster-rcnn/lib/datasets/ds_utils.py
将第12行:hashes = np.round(boxes * scale).dot(v)
改为:hashes = np.round(boxes * scale).dot(v).astype(np.int)
3) /home/xxx/py-faster-rcnn/lib/fast_rcnn/test.py
将第129行: hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v)
改为: hashes = np.round(blobs['rois'] * cfg.DEDUP_BOXES).dot(v).astype(np.int)
4)/home/xxx/py-faster-rcnn/lib/rpn/proposal_target_layer.py
将第60行:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image)
改为:fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image).astype(np.int)
5.TypeError: slice indices must be integers or None or have an index method
依然是numpy版本问题,依然推荐改代码:
修改 /home/lzx/py-faster-rcnn/lib/rpn/proposal_target_layer.py,转到123行,原来内容:
for ind in inds:
cls = clss[ind]
start = 4 * cls
end = start + 4
bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
return bbox_targets, bbox_inside_weights
修改为:
for ind in inds:
ind = int(ind)
cls = clss[ind]
start = int(4 * cls)
end = int(start + 4)
bbox_targets[ind, start:end] = bbox_target_data[ind, 1:]
bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS
return bbox_targets, bbox_inside_weights
到此为止,全部完成!!!撒花!!!