Redis之Set类型原理和应用场景(八)

原理分析

Set 类型的底层数据结构是由哈希表或整数集合实现的:

  • 如果集合中的元素都是整数且元素个数小于 512 (默认值,set-maxintset-entries配置)个,Redis 会使用整数集合作为 Set 类型的底层数据结构;
  • 如果集合中的元素不满足上面条件,则 Redis 使用哈希表作为 Set 类型的底层数据结构。

哈希表在前面hash类型已经讲过了,还不清楚的可以翻看前面的文章

整数集合

整数集合本质上是一块连续内存空间,它的结构定义如下:

typedef struct intset {
    //编码方式
    uint32_t encoding;
    //集合包含的元素数量
    uint32_t length;
    //保存元素的数组
    int8_t contents[];
} intset;

可以看到,保存元素的容器是一个 contents 数组,虽然 contents 被声明为 int8_t 类型的数组,但是实际上 contents 数组并不保存任何 int8_t 类型的元素,contents 数组的真正类型取决于 intset 结构体里的 encoding 属性的值。比如:

  • 如果 encoding 属性值为 INTSET_ENC_INT16,那么 contents 就是一个 int16_t 类型的数组,数组中每一个元素的类型都是 int16_t;
  • 如果 encoding 属性值为 INTSET_ENC_INT32,那么 contents 就是一个 int32_t 类型的数组,数组中每一个元素的类型都是 int32_t;
  • 如果 encoding 属性值为 INTSET_ENC_INT64,那么 contents 就是一个 int64_t 类型的数组,数组中每一个元素的类型都是 int64_t;

不同类型的 contents 数组,意味着数组的大小也会不同。

整数集合的升级操作

整数集合会有一个升级规则,就是当我们将一个新元素加入到整数集合里面,如果新元素的类型(int32_t)比整数集合现有所有元素的类型(int16_t)都要长时,整数集合需要先进行升级,也就是按新元素的类型(int32_t)扩展 contents 数组的空间大小,然后才能将新元素加入到整数集合里,当然升级的过程中,也要维持整数集合的有序性。

整数集合升级的过程不会重新分配一个新类型的数组,而是在原本的数组上扩展空间,然后在将每个元素按间隔类型大小分割,如果 encoding 属性值为 INTSET_ENC_INT16,则每个元素的间隔就是 16 位。

举个例子,假设有一个整数集合里有 3 个类型为 int16_t 的元素。

redis存放set redis存储set_java

现在,往这个整数集合中加入一个新元素 65535,这个新元素需要用 int32_t 类型来保存,所以整数集合要进行升级操作,首先需要为 contents 数组扩容,在原本空间的大小之上再扩容多 80 位(4x32-3x16=80),这样就能保存下 4 个类型为 int32_t 的元素

redis存放set redis存储set_数组_02

扩容完 contents 数组空间大小后,需要将之前的三个元素转换为 int32_t 类型,并将转换后的元素放置到正确的位上面,并且需要维持底层数组的有序性不变,整个转换过程如下:

redis存放set redis存储set_java_03

整数集合升级有什么好处呢?

如果要让一个数组同时保存 int16_t、int32_t、int64_t 类型的元素,最简单做法就是直接使用 int64_t 类型的数组。不过这样的话,当如果元素都是 int16_t 类型的,就会造成内存浪费的情况。

整数集合升级就能避免这种情况,如果一直向整数集合添加 int16_t 类型的元素,那么整数集合的底层实现就一直是用 int16_t 类型的数组,只有在我们要将 int32_t 类型或 int64_t 类型的元素添加到集合时,才会对数组进行升级操作。

因此,整数集合升级的好处是节省内存资源

整数集合支持降级操作吗?

不支持降级操作,一旦对数组进行了升级,就会一直保持升级后的状态。比如前面的升级操作的例子,如果删除了 65535 元素,整数集合的数组还是 int32_t 类型的,并不会因此降级为 int16_t 类型。

常用命令

Set常用操作

SADD  key  member  [member ...]			//往集合key中存入元素,元素存在则忽略,
							若key不存在则新建
SREM  key  member  [member ...]			//从集合key中删除元素
SMEMBERS  key					//获取集合key中所有元素
SCARD  key					//获取集合key的元素个数
SISMEMBER  key  member			//判断member元素是否存在于集合key中
SRANDMEMBER  key  [count]			//从集合key中选出count个元素,元素不从key中删除
SPOP  key  [count]				//从集合key中选出count个元素,元素从key中删除

Set运算操作
SINTER  key  [key ...] 				//交集运算
SINTERSTORE  destination  key  [key ..]		//将交集结果存入新集合destination中
SUNION  key  [key ..] 				//并集运算
SUNIONSTORE  destination  key  [key ...]		//将并集结果存入新集合destination中
SDIFF  key  [key ...] 				//差集运算
SDIFFSTORE  destination  key  [key ...]		//将差集结果存入新集合destination中

应用场景

微信抽奖小程序

1)点击参与抽奖加入集合
SADD key {userlD}
2)查看参与抽奖所有用户
SMEMBERS key	  
3)抽取count名中奖者
SRANDMEMBER key [count] / SPOP key [count]

redis存放set redis存储set_哈希算法_04

微信微博点赞,收藏,标签

1) 点赞
SADD  like:{消息ID}  {用户ID}
2) 取消点赞
SREM like:{消息ID}  {用户ID}
3) 检查用户是否点过赞
SISMEMBER  like:{消息ID}  {用户ID}
4) 获取点赞的用户列表
SMEMBERS like:{消息ID}
5) 获取点赞用户数 
SCARD like:{消息ID}

redis存放set redis存储set_redis_05

集合操作

SINTER set1 set2 set3 -> { c }
SUNION set1 set2 set3 ->{ a,b,c,d,e }
SDIFF set1 set2 set3 ->{ a }

redis存放set redis存储set_redis_06

集合操作实现微博微信关注模型

1) a关注的人: 
aSet-> {guojia, xushu}
2) b老师关注的人:
 bSet--> {zhuge, baiqi, guojia, xushu}
3) c关注的人: 
cSet-> {zhuge, yangguo, baiqi, xushu, xunyu)
4) 我和杨过老师共同关注: 
SINTER aSet bSet--> {guojia, xushu}
5) 我关注的人也关注他(b): 
SISMEMBER cSet yangguo 
6) 我可能认识的人: 
SDIFF bSet aSet->(zhuge, baiqi}

redis存放set redis存储set_redis存放set_07

集合操作实现电商商品筛选

SADD  brand:huawei  P40
SADD  brand:xiaomi  mi-10
SADD  brand:iPhone iphone12
SADD os:android  P40  mi-10
SADD cpu:brand:intel  P40  mi-10
SADD ram:8G  P40  mi-10  iphone12

SINTER  os:android  cpu:brand:intel  ram:8G   {P40,mi-10}

redis存放set redis存储set_java_08