///

 在Unity中常用的的图片格式有RGBA32,RGBA16,ETC,PVRTC等。这里我们主要讨论带透明通道的RGBA32和RGBA16这两种格式的图片在Unity占用的内存空间已经优化方案。

我们知道,RGBA32是R,G,B,A四个通道每个通道用8位来表示,RGBA16则是用4位。所以RGBA32能够带来更好的显示效果。同时也会带来更大的内存消耗。下面给两张RGBA16和RGBA32的对比图。

RGBA32

unity 检测图片Alpha占比 unity图片大小优化_内存空间

 RGBA32.png

RGBA16

unity 检测图片Alpha占比 unity图片大小优化_算法_02

 RGBA16.png

从上面两个图可以看得出,RGBA32能够带来更好的显示效果。而RGBA16在有些地方的色阶太明显,导致显示效果不尽人意。由此keijiro(Github地址)写了一个dither算法来消除这种色阶,以达到高于RGBA16低于RGBA32的显示效果。

下图为Dither优化之后的RGBA16

unity 检测图片Alpha占比 unity图片大小优化_算法_03

 RGBA16-Dither.png

通过对比能明显看出优化后的RGBA16能够消除色阶,如果不是放大特意看,和RGBA32几乎差别不同。通过这种方式将内存降低一半确认带来更好的效果。

万事总会存在利弊,这个算法在消除了色阶的同事,带来的是更多的噪点。所以这个方法不适用于图片需要放大来显示的。总体来说,该方案在一定程度上还是能够带来很好的效果。
最后把算法的核心代码贴出来 。

public class TextureImportSetting : AssetPostprocessor {

    string[] assetTexturePath = new string[]{"Assets/Resources/TextureVN/"}; //放置需要优化的路径
    void OnPreprocessTexture(){
        foreach (var str in assetTexturePath)
        {
            if (this.assetPath.StartsWith(str) )
            {
                TextureImporter textureImporter = this.assetImporter as TextureImporter;
                textureImporter.textureType = TextureImporterType.Advanced;
                textureImporter.npotScale = TextureImporterNPOTScale.ToNearest;
                textureImporter.mipmapEnabled = false;
                textureImporter.isReadable = false;
                if ( textureImporter.DoesSourceTextureHaveAlpha())
                {
                    textureImporter.textureFormat = TextureImporterFormat.RGBA32;
                }
            }
        }
    }
    public static void OnPostprocessRGB16 (Texture2D texture)
    {
        
        var texw = texture.width;
        var texh = texture.height;

        var pixels = texture.GetPixels ();
        var offs = 0;

        var k1Per15 = 1.0f / 15.0f;
        var k1Per16 = 1.0f / 16.0f;
        var k3Per16 = 3.0f / 16.0f;
        var k5Per16 = 5.0f / 16.0f;
        var k7Per16 = 7.0f / 16.0f;

        for (var y = 0; y < texh; y++) {
            for (var x = 0; x < texw; x++) {
                float a = pixels [offs].a;
                float r = pixels [offs].r;
                float g = pixels [offs].g;
                float b = pixels [offs].b;

                var a2 = Mathf.Clamp01 (Mathf.Floor (a * 16) * k1Per15);
                var r2 = Mathf.Clamp01 (Mathf.Floor (r * 16) * k1Per15);
                var g2 = Mathf.Clamp01 (Mathf.Floor (g * 16) * k1Per15);
                var b2 = Mathf.Clamp01 (Mathf.Floor (b * 16) * k1Per15);

                var ae = a - a2;
                var re = r - r2;
                var ge = g - g2;
                var be = b - b2;

                pixels [offs].a = a2;
                pixels [offs].r = r2;
                pixels [offs].g = g2;
                pixels [offs].b = b2;

                var n1 = offs + 1;
                var n2 = offs + texw - 1;
                var n3 = offs + texw;
                var n4 = offs + texw + 1;

                if (x < texw - 1) {
                    pixels [n1].a += ae * k7Per16;
                    pixels [n1].r += re * k7Per16;
                    pixels [n1].g += ge * k7Per16;
                    pixels [n1].b += be * k7Per16;
                }

                if (y < texh - 1) {
                    pixels [n3].a += ae * k5Per16;
                    pixels [n3].r += re * k5Per16;
                    pixels [n3].g += ge * k5Per16;
                    pixels [n3].b += be * k5Per16;

                    if (x > 0) {
                        pixels [n2].a += ae * k3Per16;
                        pixels [n2].r += re * k3Per16;
                        pixels [n2].g += ge * k3Per16;
                        pixels [n2].b += be * k3Per16;
                    }

                    if (x < texw - 1) {
                        pixels [n4].a += ae * k1Per16;
                        pixels [n4].r += re * k1Per16;
                        pixels [n4].g += ge * k1Per16;
                        pixels [n4].b += be * k1Per16;
                    }
                }

                offs++;
            }
        }

        texture.SetPixels (pixels);
        EditorUtility.CompressTexture (texture, TextureFormat.RGBA4444, TextureCompressionQuality.Best);
    }
    void OnPostprocessTexture(Texture2D texture){

        foreach (var str in assetTexturePath)
        {
            if (this.assetPath.StartsWith(str) )
            {
                TextureImporter textureImporter = this.assetImporter as TextureImporter;
                if ( textureImporter.DoesSourceTextureHaveAlpha())
                {
                    OnPostprocessRGB16(texture);
                }
            }
        }
    }
}

//

在Unity移动平台的游戏开发过程中,贴图资源是往往是占资源量最大的资源。如何在保证视觉效果的同时,尽可能地减少贴图资源,是开发团队会经常遇到的问题。通常来说,对于3D物体的纹理,是可以采用ETC/PVRTC等压缩比很大的算法处理,但是对于细节要求很高的UI纹理,这样处理造成的失真往往达不到质量要求。对于这类的贴图,我们可以考虑使用失真较小的16位贴图格式存储。

但是对于颜色数较高的纹理,Unity提供的默认转换方法会呈现明显的色阶。针对该问题,keijiro实现了一种Dither4444的改进算法。从下图1上可以看到,对于画面细节比较平滑的图片,该算法虽然消除了色阶现象,同时带来了肉眼可见的噪点。

unity 检测图片Alpha占比 unity图片大小优化_unity_04

<图1> 左:原始图 右:keijiro的 Dither4444示意图

笔者在keijiro的算法基础上进行了改进,提供了一个将RGB24 Bit图Dither之后转RGB565的方法,基本消除了肉眼可见的失真,实际效果见下图2。

unity 检测图片Alpha占比 unity图片大小优化_贴图_05

<图2> 左:原始图 右:笔者的 Dither565示意图

实际在我的项目的应用中,对于不适合ETC/PVRTC压缩的图片,都采用了该文章中的RGB565或者RGB565+A8的方式。在肉眼基本无失真的基础上,节省了部分资源。

最后附上OnPostprocessTexture代码:

void OnPostprocessTexture (Texture2D texture)
{
          if(assetPath.Contains ("_dither565"))
          {
                   var texw = texture.width;
                   var texh = texture.height;

               var pixels = texture.GetPixels ();
               var offs = 0;

               var k1Per31 = 1.0f / 31.0f;

               var k1Per32 = 1.0f / 32.0f;
               var k5Per32 = 5.0f / 32.0f;
               var k11Per32 = 11.0f / 32.0f;
               var k15Per32 = 15.0f / 32.0f;

               var k1Per63 = 1.0f / 63.0f;

               var k3Per64 = 3.0f / 64.0f;
               var k11Per64 = 11.0f / 64.0f;
               var k21Per64 = 21.0f / 64.0f;
               var k29Per64 = 29.0f / 64.0f;

               var k_r = 32; //R&B压缩到5位,所以取2的5次方
               var k_g = 64; //G压缩到6位,所以取2的6次方

               for(var y = 0; y < texh; y++){
                         for(var x = 0; x < texw; x++){
                                  float r = pixels [offs].r;
                                  float g = pixels [offs].g;
                                  float b = pixels [offs].b;

                                  var r2 = Mathf.Clamp01 (Mathf.Floor (r * k_r) * k1Per31);
                                  var g2 = Mathf.Clamp01 (Mathf.Floor (g * k_g) * k1Per63);
                                  var b2 = Mathf.Clamp01 (Mathf.Floor (b * k_r) * k1Per31);

                                  var re = r - r2;
                                  var ge = g - g2;
                                  var be = b - b2;

                                  var n1 = offs + 1;
                                  var n2 = offs + texw - 1;
                                  var n3 = offs + texw;
                                  var n4 = offs + texw + 1;

                                  if(x < texw - 1){
                                            pixels [n1].r += re * k15Per32;
                                            pixels [n1].g += ge * k29Per64;
                                            pixels [n1].b += be * k15Per32;
                                  }

                                  if(y < texh - 1){
                                            pixels [n3].r += re * k11Per32;
                                            pixels [n3].g += ge * k21Per64;
                                            pixels [n3].b += be * k11Per32;

                                            if(x > 0){
                                                      pixels [n2].r += re * k5Per32;
                                                      pixels [n2].g += ge * k11Per64;
                                                      pixels [n2].b += be * k5Per32;
                                            }

                                            if(x < texw - 1){
                                                      pixels [n4].r += re * k1Per32;
                                                      pixels [n4].g += ge * k3Per64;
                                                      pixels [n4].b += be * k1Per32;
                                            }
                                  }

                                  pixels [offs].r = r2;
                                  pixels [offs].g = g2;
                                  pixels [offs].b = b2;

                                  offs++;
                         }
               }

               texture.SetPixels (pixels);
               EditorUtility.CompressTexture (texture, TextureFormat.RGB565, TextureCompressionQuality.Best);
      }
}