题目链接:​​http:///volume_showproblem.php?problem=1034​

题意:有向图,选择尽量少的点,从这些点出发,使得所有点都被到达过。

思路:首先,进行强连通缩点。然后每个强连通间按照拓扑排序的思想建边。入度为0的强连通的个数即为答案。

代码:

#include <stdio.h>
#include <iostream>
#include <math.h>
#include <stdlib.h>
#include <ctype.h>
#include <algorithm>
#include <vector>
#include <string.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <sstream>
#include <malloc.h>
#include <functional>

using namespace std;

const int MAXN = 20010;
const int MAXM = 500100;

struct Edge
{
int to, next;
}edge[MAXM];

int head[MAXM], tot;
int Low[MAXN], Dfn[MAXN], Stack[MAXN], Belong[MAXN];//Belong的值为 1 ~ scc
int Index, top;
int scc;//强连通个数
bool Instack[MAXN];
int num[MAXN];//各个强连通包含的点的个数

void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}

void Tarjan(int u)
{
int v;
Low[u] = Dfn[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if (!Dfn[v])
{
Tarjan(v);
if (Low[u] > Low[v])
Low[u] = Low[v];
}
else if (Instack[v] && Low[u] > Dfn[v])
Low[u] = Dfn[v];
}
if (Low[u] == Dfn[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
} while (v != u);
}
}

void solve(int N)
{
memset(Dfn, 0, sizeof(Dfn));
memset(Instack, false, sizeof(Instack));
memset(num, 0, sizeof(num));
Index = scc = top = 0;
for (int i = 1; i <= N; i++)
{
if (!Dfn[i])
Tarjan(i);
}
}

void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}

int n, m;
int in[100010];

int main()
{
int t, cases = 1;
scanf("%d", &t);

while (t--)
{
init();
memset(in, 0, sizeof(in));

scanf("%d%d", &n, &m);
int u, v;
for (int i = 1;i <= m;i++)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
solve(n);
for (int u = 1;u <= n;u++)
{
for (int j = head[u];j != -1;j = edge[j].next)
{
int v = edge[j].to;
int t1 = Belong[u];
int t2 = Belong[v];
if (t1 != t2)
in[t2]++;
}
}

int ans = 0;
for (int i = 1;i <= scc;i++)
if (in[i] == 0) ans++;
printf("Case %d: %d\n", cases++, ans);

}
return 0;
}