题目描述

[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java组数据,给出[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_02,[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_03,求[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_04

题目分析

直接开始变换,假设N<M
[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_05
总算推完了…
此时只需要[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_06线性筛出[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_07,然后处理[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_08的前缀和
[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_09可以[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_10
利用整除分块优化,时间复杂度为[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_11

AC code([bzoj 2693] jzptab)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 1e8+9;
int N, M;
namespace Mobius
{
int mu[MAXN], Prime[MAXN], cnt;
bool IsnotPrime[MAXN];
int sum[MAXN];
void init()
{
sum[1] = 1;
for(int i = 2; i <= MAXN-5; i++)
{
if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
for(int j = 1; j <= cnt && i * Prime[j] <= MAXN-5; j++)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
}
}
for(int i = 1; i <= MAXN-5; i++)//前缀和
sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
}
int Sum(int N, int M)
{
return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
}
int calc(int N, int M)
{
int ret = 0;
for(int i = 1, j; i <= N; i=j+1)//整除分块
{
j = min(N/(N/i), M/(M/i));
ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
}
return ret;
}
}
using namespace Mobius;
int main ()
{
int T; init();
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &N, &M); if(N > M) swap(N, M);
printf("%d\n", (calc(N, M) + mod) % mod);
}
}
AC code([bzoj 2154] Crash的数字表格)

这道题有个恶心的地方,不能用[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_12来预处理,否则会[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_13,要读入[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_02,[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_03后再[bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)_java_16处理

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 10000005, mod = 20101009;
int N, M;
namespace Mobius
{
int mu[MAXN], Prime[MAXN], cnt;
bool IsnotPrime[MAXN];
int sum[MAXN];
void init()
{
sum[1] = 1;
for(int i = 2; i <= N; i++)
{
if(!IsnotPrime[i]) Prime[++cnt] = i, sum[i] = 1-i;
for(int j = 1; j <= cnt && i * Prime[j] <= N; j++)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0) { sum[i * Prime[j]] = sum[i]; break; }
sum[i * Prime[j]] = 1ll * sum[i] * (1 - Prime[j]) % mod;
}
}
for(int i = 1; i <= N; i++)
sum[i] = (sum[i-1] + 1ll*sum[i]*i%mod) % mod;
}
int Sum(int N, int M)
{
return ((1ll*N*(N+1)/2) % mod) * ((1ll*M*(M+1)/2) % mod) % mod;
}
int calc(int N, int M)
{
int ret = 0;
for(int i = 1, j; i <= N; i=j+1)
{
j = min(N/(N/i), M/(M/i));
ret = (ret + 1ll * (sum[j] - sum[i-1]) % mod * Sum(N/i, M/i) % mod) % mod;
}
return ret;
}
}
using namespace Mobius;
int main ()
{
scanf("%d%d", &N, &M); if(N > M) swap(N, M); init();
printf("%d\n", (calc(N, M) + mod) % mod);
}