«问题描述:
给定一个N*N 的方形网格,设其左上角为起点◎,坐标为(1,1),X 轴向右为正,Y
轴向下为正,每个方格边长为1,如图所示。一辆汽车从起点◎出发驶向右下角终点▲,其
坐标为(N,N)。在若干个网格交叉点处,设置了油库,可供汽车在行驶途中加油。汽车在
行驶过程中应遵守如下规则:
(1)汽车只能沿网格边行驶,装满油后能行驶K 条网格边。出发时汽车已装满油,在起
点与终点处不设油库。
(2)汽车经过一条网格边时,若其X 坐标或Y 坐标减小,则应付费用B,否则免付费用。
(3)汽车在行驶过程中遇油库则应加满油并付加油费用A。
(4)在需要时可在网格点处增设油库,并付增设油库费用C(不含加油费用A)。
(5)(1)~(4)中的各数N、K、A、B、C均为正整数,且满足约束:2 <= N <= 100,2 <= K <= 10。
设计一个算法,求出汽车从起点出发到达终点的一条所付费用最少的行驶路线。
«编程任务:
对于给定的交通网格,计算汽车从起点出发到达终点的一条所付费用最少的行驶路线。
«数据输入:
由文件trav.in提供输入数据。文件的第一行是N,K,A,B,C的值。第二行起是一
个N*N 的0-1 方阵,每行N 个值,至N+1 行结束。方阵的第i 行第j 列处的值为1 表示在
网格交叉点(i,j)处设置了一个油库,为0 时表示未设油库。各行相邻两个数以空格分隔。
«结果输出:
程序运行结束时,将最小费用输出到文件trav.out中。
输入文件示例 输出文件示例
trav.in
9 3 2 3 6
0 0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 0 0
1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1
1 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0
trav.out
12
【分析】
分层图尼玛尼玛尼玛尼玛
c要加a尼玛尼玛尼玛尼玛尼玛尼玛尼玛尼玛
板鸡板鸡板鸡板鸡板鸡板鸡板鸡
都怪我没脑子没脑子没脑子没脑子
楼主已经气成了神经病↑
【代码】