题目:You Only Look Once: Unified, Real-Time Object Detection

名称:你只看一次:统一的实时对象检测

题目:YOLO9000: Better, Faster, Stronger

名称:YOLO9000:更好、更快、更强

题目:YOLOv3: An Incremental Improvement

名称:YOLOv3:增量改进

题目:YOLOv4: Optimal Speed and Accuracy of Object Detection

名称:YOLOv4:目标检测的最佳速度和准确性

题目:YOLOX: Exceeding YOLO Series in 2021

名称:YOLOX:2021年超越YOLO系列

题目:YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles

名称:YOLO-Z:改进自动驾驶车辆 YOLOv5 中的小物体检测

题目:You Only Learn One Representation: Unified Network for Multiple Tasks

名称:您只学习一种表示:多任务统一网络

题目:YOLOP: You Only Look Once for Panoptic Driving Perception

名称:YOLOP:您只寻找一次全景驾驶感知

题目:TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-captured Scenarios

名称:TPH-YOLOv5:改进的基于 Transformer 预测头的 YOLOv5 用于无人机捕获场景的目标检测

题目:PP-YOLOv2: A Practical Object Detector

名称:PP-YOLOv2:实用的物体检测器

题目:PP-YOLOE: An evolved version of YOLO

名称:PP-YOLOE:YOLO的进化版

题目:PP-YOLO: An Effective and Efficient Implementation of Object Detector

名称:PP-YOLO:一种有效且高效的目标检测器实现

题目:Poly-YOLO: higher speed, more precise detection and instance segmentation for YOLOv3

名称:Poly-YOLO:YOLOv3 的更高速度、更精确的检测和实例分割

题目:Integrated Multiscale Domain Adaptive YOLO

名称:集成多尺度域自适应 YOLO

题目:Mirror-Yolo: An attention-based instance segmentation and detection model for mirrors

名称:Mirror-Yolo:一种基于注意力的镜像实例分割和检测模型

题目:Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

名称:用于恶劣天气条件下目标检测的图像自适应 YOLO

题目:YOLO in the Dark - Domain Adaptation Method for Merging Multiple Models

名称:用于合并多个模型的YOLO暗域自适应方法

题目:ZSD-YOLO: Zero-Shot YOLO Detection using Vision-Language KnowledgeDistillation

名称:ZSD-YOLO:使用视觉语言知识蒸馏的零样本 YOLO 检测

题目:YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPU

名称:YOLO-ReT:在边缘 GPU 上实现高精度实时目标检测

题目:CSL-YOLO: A New Lightweight Object Detection System for Edge Computing

名称:CSL-YOLO:一种用于边缘计算的新型轻量级目标检测系统

题目:Domain Adaptive YOLO for One-Stage Cross-Domain Detection

名称:用于单阶段跨域检测的域自适应 YOLO

题目:Multiscale Domain Adaptive YOLO for Cross-Domain Object Detection

名称:用于跨域目标检测的多尺度域自适应 YOLO

题目:Tea Chrysanthemum Detection under Unstructured Environments Using the TC-YOLO Model

名称:基于TC-YOLO模型的非结构化环境下茶菊花检测

题目:New SAR target recognition based on YOLO and very deep multi-canonical correlation analysis

名称:基于YOLO的新型SAR目标识别和非常深的多典型相关分析

题目:LF-YOLO: A Lighter and Faster YOLO for Weld Defect Detection of X-ray Image

名称:LF-YOLO:用于 X 射线图像焊接缺陷检测的更轻、更快的 YOLO

题目:EYNet: Extended YOLO for Airport Detection in Remote Sensing Images

名称:EYNet:用于遥感图像中机场检测的扩展 YOLO

题目:A lightweight and accurate YOLO-like network for small target detection in Aerial Imagery

名称:一种轻量级且准确的类 YOLO 网络,用于航空影像中的小目标检测

题目:通过 YOLO 进行轻量级多无人机检测和 3D 定位

名称:通过 YOLO 进行轻量级多无人机检测和 3D 定位

题目:YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss

名称:YOLO-Pose:使用对象关键点相似性损失增强多人姿势估计的 YOLO

题目:INSTA-YOLO: Real-Time Instance Segmentation

名称:INSTA-YOLO:实时实例分割

题目:Support Vector Machine and YOLO for a Mobile Food Grading System

名称:用于移动食品分级系统的支持向量机和 YOLO

题目:Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset Shifts

名称:Stochastic-YOLO:数据集转移下的高效概率目标检测

题目:Tiny-YOLO object detection supplemented with geometrical data

名称:辅以几何数据的 Tiny-YOLO 对象检测

题目:Expandable YOLO: 3D Object Detection from RGB-D Images

名称:可扩展的 YOLO:从 RGB-D 图像进行 3D 对象检测

题目:3D Object Detection Method Based on YOLO and K-Means for Image and Point Clouds

名称:基于YOLO和K-Means的图像和点云3D目标检测方法

题目:YOLO and K-Means Based 3D Object Detection Method on Image and Point Cloud

名称:基于 YOLO 和 K-Means 的图像和点云 3D 目标检测方法

题目:WQT and DG-YOLO: towards domain generalization in underwater object detection

名称:WQT 和 DG-YOLO:水下目标检测领域的泛化

题目:YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection

名称:YOLO Nano:一个高度紧凑的你只看一次的卷积神经网络,用于目标检测

题目:REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGA

名称:REQ-YOLO:一种资源感知、高效的 FPGA 目标检测量化框架

题目:Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds

名称:Complexer-YOLO:语义点云上的实时 3D 对象检测和跟踪

题目:DC-SPP-YOLO: Dense Connection and Spatial Pyramid Pooling Based YOLO for Object Detection

名称:DC-SPP-YOLO:用于目标检测的基于密集连接和空间金字塔池的 YOLO

题目:Spiking-YOLO: Spiking Neural Network for Energy-Efficient Object Detection

名称:Spiking-YOLO:用于节能目标检测的脉冲神经网络

题目:You Only Look Once series papers

名称:mbd.pub/o/bread/Z5yck59p