【算法介绍】

基于YOLOv8的钓鱼检测系统是一种利用深度学习技术进行自动化监测的系统,它旨在实现对河道等水域中违规钓鱼行为的快速、准确识别。以下是对该系统的详细介绍:

一、系统背景与意义

随着社会发展和人口增长,对自然资源的保护和管理变得越来越重要。河流是重要的自然资源之一,对生态系统和人类社会都至关重要。然而,违规钓鱼等活动可能对河流生态环境造成严重破坏,并影响水域资源的可持续利用。因此,建立一种有效的河道违规钓鱼检测系统对于保护水域资源、维护生态平衡具有重要意义。

二、系统原理与技术

该系统基于YOLOv8目标检测算法,该算法是YOLO系列算法的最新版本,具有速度快、准确性高、泛化能力强等优点。它通过将目标检测问题转化为一个回归问题,能够在一次前向传播过程中完成目标的位置和类别预测。

在钓鱼检测系统中,YOLOv8算法被用于训练一个能够识别钓鱼行为的模型。该模型通过大量包含钓鱼行为的图像数据进行训练,学习到了钓鱼行为的特征,并能够在新的图像中准确识别出钓鱼行为。

三、系统功能与特点

  1. 实时检测:系统能够实时地对摄像头捕捉到的图像进行钓鱼行为的检测,并立即给出检测结果。
  2. 高精度识别:由于采用了先进的YOLOv8算法,系统具有非常高的识别精度,能够准确地区分钓鱼行为和其他类似活动。
  3. 可视化展示:系统提供了可视化界面,能够直观地展示检测结果,包括钓鱼行为的位置、置信度等信息。
  4. 结果导出:系统支持将检测结果导出为Excel等文件格式,方便后续分析和处理。
  5. 易于部署:系统采用了Python和PyQt5等开源技术,使得系统易于部署和维护。

四、应用场景与效益

  1. 生态保护:该系统可应用于监测保护区、野生动物栖息地等河流环境,帮助管理者及时发现违规捕捞、非法猎捕等行为,保护水域生态系统的完整性。
  2. 执法监管:政府部门可利用该系统加强对河流资源的执法监管,有效打击非法捕捞、盗渔等违法行为,维护水域资源的可持续利用。
  3. 旅游管理:对于河流旅游景区,该系统可用于监测游客钓鱼行为,保障游客安全和景区环境的整洁,提升旅游体验。

五、发展趋势与挑战

随着深度学习技术的不断发展和计算机硬件性能的提升,基于YOLOv8的钓鱼检测系统将在未来得到更广泛的应用。然而,该系统也面临着一些挑战,如复杂环境下的识别精度问题、模型训练的数据获取问题等。为了解决这些问题,需要不断研究新的算法和技术,并加强数据集的建设和管理。

综上所述,基于YOLOv8的钓鱼检测系统是一种具有广阔应用前景和重要意义的技术。它将为水域资源的保护和管理提供有力的支持,同时也为深度学习技术的应用开辟了新的领域。

【效果展示】

基于yolov8的钓鱼检测系统python源码+onnx模型+评估指标曲线+精美GUI界面_数据集

编辑

基于yolov8的钓鱼检测系统python源码+onnx模型+评估指标曲线+精美GUI界面_数据集_02

编辑

【测试环境】

windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.3.21
onnxruntime==1.16.3

【模型可以检测出类别】

fishing

【训练数据集】

blog.csdn.net/2403_88102872/article/details/144145435

【训练信息】

参数


训练集图片数

1584

验证集图片数

153

训练map

81.8%

训练精度(Precision)

82.9%

训练召回率(Recall)

73.8%

验证集测试精度信息

类别

MAP0.5(单位:%)

all

82

fishing

82

 【部分实现源码】

class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【项目编号】mbd.pub/o/bread/Z5yUmJ9u

【训练步骤】

使用YOLOv8训练自己的数据集需要遵循一些基本的步骤。YOLOv8是YOLO系列模型的一个版本,它在前代基础上做了许多改进,包括但不限于更高效的训练流程和更高的精度。以下是训练自己YOLO格式数据集的详细步骤:

一、 准备环境

1. 安装必要的软件:确保你的计算机上安装了Python(推荐3.6或更高版本),以及CUDA和cuDNN(如果你打算使用GPU进行加速)。

2. 安装YOLOv8库:你可以通过GitHub克隆YOLOv8的仓库或者直接通过pip安装YOLOv8。例如:
   pip install ultralytics

二、数据准备

3. 组织数据结构:按照YOLO的要求组织你的数据文件夹。通常,你需要一个包含图像和标签文件的目录结构,如:

   dataset/
   ├── images/
   │   ├── train/
   │   └── val/
   ├── labels/
   │   ├── train/
   │   └── val/

   其中,train和val分别代表训练集和验证集。且images文件夹和labels文件夹名字不能随便改写或者写错,否则会在训练时候找不到数据集。

4. 标注数据:使用合适的工具对图像进行标注,生成YOLO格式的标签文件。每个标签文件应该是一个.txt文件,每行表示一个边界框,格式为:

   <类别ID> <中心点x> <中心点y> <宽度> <高度>

   这些值都是相对于图像尺寸的归一化值。

5. 创建数据配置文件:创建一个.yaml文件来定义你的数据集,包括路径、类别列表等信息。例如:
yaml
   # dataset.yaml
   path: ./dataset  # 数据集根目录
   train: images/train  # 训练图片相对路径
   val: images/val  # 验证图片相对路径
   
   nc: 2  # 类别数
   names: ['class1', 'class2']  # 类别名称

三、模型训练

6. 加载预训练模型:可以使用官方提供的预训练模型作为起点,以加快训练速度并提高性能。

7. 配置训练参数:根据需要调整训练参数,如批量大小、学习率、训练轮次等。这通常可以通过命令行参数或配置文件完成。

8. 开始训练:使用YOLOv8提供的命令行接口开始训练过程。例如:

   yolo train data=dataset.yaml model=yolov8n.yaml epochs=100 imgsz=640

更多参数如下:

参数

默认值

描述

model

None

Specifies the model file for training. Accepts a path to either a .pt pretrained model or a .yaml configuration file. Essential for defining the model structure or initializing weights.

data

None

Path to the dataset configuration file (e.g., coco8.yaml). This file contains dataset-specific parameters, including paths to training and validation data , class names, and number of classes.

epochs

100

Total number of training epochs. Each epoch represents a full pass over the entire dataset. Adjusting this value can affect training duration and model performance.

time

None

Maximum training time in hours. If set, this overrides the epochs argument, allowing training to automatically stop after the specified duration. Useful for time-constrained training scenarios.

patience

100

Number of epochs to wait without improvement in validation metrics before early stopping the training. Helps prevent overfitting by stopping training when performance plateaus.

batch

16

Batch size, with three modes: set as an integer (e.g., batch=16), auto mode for 60% GPU memory utilization (batch=-1), or auto mode with specified utilization fraction (batch=0.70).

imgsz

640

Target image size for training. All images are resized to this dimension before being fed into the model. Affects model accuracy and computational complexity.

save

True

Enables saving of training checkpoints and final model weights. Useful for resuming training ormodel deployment.

save_period

-1

Frequency of saving model checkpoints, specified in epochs. A value of -1 disables this feature. Useful for saving interim models during long training sessions.

cache

False

Enables caching of dataset images in memory (True/ram), on disk (disk), or disables it (False). Improves training speed by reducing disk I/O at the cost of increased memory usage.

device

None

Specifies the computational device(s) for training: a single GPU (device=0), multiple GPUs (device=0,1), CPU (device=cpu), or MPS for Apple silicon (device=mps).

workers

8

Number of worker threads for data loading (per RANK if Multi-GPU training). Influences the speed of data preprocessing and feeding into the model, especially useful in multi-GPU setups.

project

None

Name of the project directory where training outputs are saved. Allows for organized storage of different experiments.

name

None

Name of the training run. Used for creating a subdirectory within the project folder, where training logs and outputs are stored.

exist_ok

False

If True, allows overwriting of an existing project/name directory. Useful for iterative experimentation without needing to manually clear previous outputs.

pretrained

True

Determines whether to start training from a pretrained model. Can be a boolean value or a string path to a specific model from which to load weights. Enhances training efficiency and model performance.

optimizer

'auto'

Choice of optimizer for training. Options include SGDAdamAdamWNAdamRAdamRMSProp etc., or auto for automatic selection based on model configuration. Affects convergence speed and stability.

verbose

False

Enables verbose output during training, providing detailed logs and progress updates. Useful for debugging and closely monitoring the training process.

seed

0

Sets the random seed for training, ensuring reproducibility of results across runs with the same configurations.

deterministic

True

Forces deterministic algorithm use, ensuring reproducibility but may affect performance and speed due to the restriction on non-deterministic algorithms.

single_cls

False

Treats all classes in multi-class datasets as a single class during training. Useful for binary classification tasks or when focusing on object presence rather than classification.

rect

False

Enables rectangular training, optimizing batch composition for minimal padding. Can improve efficiency and speed but may affect model accuracy.

cos_lr

False

Utilizes a cosine learning rate scheduler, adjusting the learning rate following a cosine curve over epochs. Helps in managing learning rate for better convergence.

close_mosaic

10

Disables mosaic data augmentation in the last N epochs to stabilize training before completion. Setting to 0 disables this feature.

resume

False

Resumes training from the last saved checkpoint. Automatically loads model weights, optimizer state, and epoch count, continuing training seamlessly.

amp

True

Enables AutomaticMixed Precision 

 (AMP) training, reducing memory usage and possibly speeding up training with minimal impact on accuracy.

fraction

1.0

Specifies the fraction of the dataset to use for training. Allows for training on a subset of the full dataset, useful for experiments or when resources are limited.

profile

False

Enables profiling of ONNX and TensorRT speeds during training, useful for optimizing model deployment.

freeze

None

Freezes the first N layers of the model or specified layers by index, reducing the number of trainable parameters. Useful for fine-tuning or transfer learning 

.

lr0

0.01

Initial learning rate (i.e. SGD=1E-2Adam=1E-3) . Adjusting this value is crucial for the optimization process, influencing how rapidly model weights are updated.

lrf

0.01

Final learning rate as a fraction of the initial rate = (lr0 * lrf), used in conjunction with schedulers to adjust the learning rate over time.

momentum

0.937

Momentum factor for SGD or beta1 for Adam optimizers, influencing the incorporation of past gradients in the current update.

weight_decay

0.0005

L2 regularization  term, penalizing large weights to prevent overfitting.

warmup_epochs

3.0

Number of epochs for learning rate warmup, gradually increasing the learning rate from a low value to the initial learning rate to stabilize training early on.

warmup_momentum

0.8

Initial momentum for warmup phase, gradually adjusting to the set momentum over the warmup period.

warmup_bias_lr

0.1

Learning rate for bias parameters during the warmup phase, helping stabilize model training in the initial epochs.

box

7.5

Weight of the box loss component in the loss_function, influencing how much emphasis is placed on accurately predicting bouding box coordinates.

cls

0.5

Weight of the classification loss in the total loss function, affecting the importance of correct class prediction relative to other components.

dfl

1.5

Weight of the distribution focal loss, used in certain YOLO versions for fine-grained classification.

pose

12.0

Weight of the pose loss in models trained for pose estimation, influencing the emphasis on accurately predicting pose keypoints.

kobj

2.0

Weight of the keypoint objectness loss in pose estimation models, balancing detection confidence with pose accuracy.

label_smoothing

0.0

Applies label smoothing, softening hard labels to a mix of the target label and a uniform distribution over labels, can improve generalization.

nbs

64

Nominal batch size for normalization of loss.

overlap_mask

True

Determines whether object masks should be merged into a single mask for training, or kept separate for each object. In case of overlap, the smaller mask is overlayed on top of the larger mask during merge.

mask_ratio

4

Downsample ratio for segmentation masks, affecting the resolution of masks used during training.

dropout

0.0

Dropout rate for regularization in classification tasks, preventing overfitting by randomly omitting units during training.

val

True

Enables validation during training, allowing for periodic evaluation of model performance on a separate dataset.

plots

False

Generates and saves plots of training and validation metrics, as well as prediction examples, providing visual insights into model performance and learning progression.

   这里,data参数指向你的数据配置文件,model参数指定使用的模型架构,epochs设置训练轮次,imgsz设置输入图像的大小。

四、监控与评估

9. 监控训练过程:观察损失函数的变化,确保模型能够正常学习。

10. 评估模型:训练完成后,在验证集上评估模型的性能,查看mAP(平均精确度均值)等指标。

11. 调整超参数:如果模型的表现不佳,可能需要调整超参数,比如增加训练轮次、改变学习率等,并重新训练模型。

五、使用模型

12. 导出模型:训练完成后,可以将模型导出为ONNX或其他格式,以便于部署到不同的平台。比如将pytorch转成onnx模型可以输入指令
yolo export model= format=onnx
这样就会在pt模块同目录下面多一个同名的onnx模型best.onnx

下表详细说明了可用于将YOLO模型导出为不同格式的配置和选项。这些设置对于优化导出模型的性能、大小和跨各种平台和环境的兼容性至关重要。正确的配置可确保模型已准备好以最佳效率部署在预期的应用程序中。

参数

类型

默认值

描述

format

str

'torchscript'

Target format for the exported model, such as 'onnx''torchscript''tensorflow', or others, defining compatibility with various deployment environments.

imgsz

int or tuple

640

Desired image size for the model input. Can be an integer for square images or a tuple (height, width) for specific dimensions.

keras

bool

False

Enables export to Keras format for Tensorflow SavedModel, providing compatibility with TensorFlow serving and APIs.

optimize

bool

False

Applies optimization for mobile devices when exporting to TorchScript, potentially reducing model size and improving performance.

half

bool

False

Enables FP16 (half-precision) quantization, reducing model size and potentially speeding up inference on supported hardware.

int8

bool

False

Activates INT8 quantization, further compressing the model and speeding up inference with minimal accuracy loss, primarily for edge devices.

dynamic

bool

False

Allows dynamic input sizes for ONNX, TensorRT and OpenVINO exports, enhancing flexibility in handling varying image dimensions.

simplify

bool

True

Simplifies the model graph for ONNX exports with onnxslim, potentially improving performance and compatibility.

opset

int

None

Specifies the ONNX opset version for compatibility with different ONNX parsers and runtimes. If not set, uses the latest supported version.

workspace

float

4.0

Sets the maximum workspace size in GiB for TensorRT optimizations, balancing memory usage and performance.

nms

bool

False

Adds Non-Maximum Suppression (NMS) to the CoreML export, essential for accurate and efficient detection post-processing.

batch

int

1

Specifies export model batch inference size or the max number of images the exported model will process concurrently in predict mode.

device

str

None

Specifies the device for exporting: GPU (device=0), CPU (device=cpu), MPS for Apple silicon (device=mps) or DLA for NVIDIA Jetson (device=dla:0 or device=dla:1).

调整这些参数可以定制导出过程,以满足特定要求,如部署环境、硬件约束和性能目标。选择适当的格式和设置对于实现模型大小、速度和精度之间的最佳平衡至关重要。

导出格式:

可用的YOLO8导出格式如下表所示。您可以使用format参数导出为任何格式,即format='onnx'或format='engine'。您可以直接在导出的模型上进行预测或验证,即yolo predict model=yolov8n.onnx。导出完成后,将显示您的模型的使用示例。

导出格式

格式参数

模型

属性

参数

pytorch

-


-

torchscript

torchscript

yolov8n.torchscript


imgszoptimizebatch

onnx

onnx

yolov8n.onnx


imgszhalfdynamicsimplifyopsetbatch

openvino

openvino

yolov8n_openvino_model/


imgszhalfint8batch

tensorrt

engine

yolov8n.engine


imgszhalfdynamicsimplifyworkspaceint8batch

CoreML

coreml

yolov8n.mlpackage


imgszhalfint8nmsbatch

TF SaveModel

saved_model

yolov8n_saved_model/


imgszkerasint8batch

TF GraphDef

pb

yolov8n.pb


imgszbatch

TF Lite

tflite

yolov8n.tflite


imgszhalfint8batch

TF Edge TPU

edgetpu

yolov8n_edgetpu.tflite


imgsz

TF.js

tfjs

yolov8n_web_model/


imgszhalfint8batch

PaddlePaddle

paddle

yolov8n_paddle_model/


imgszbatch

MNN

mnn

yolov8n.mnn


imgszbatchint8half

NCNN

ncnn

yolov8n_ncnn_model/


imgszhalfbatch

13. 测试模型:在新的数据上测试模型,确保其泛化能力良好。

以上就是使用YOLOv8训练自己数据集的基本步骤。请根据实际情况调整这些步骤中的具体细节。希望这些信息对你有所帮助!

【常用评估参数介绍】

在目标检测任务中,评估模型的性能是至关重要的。你提到的几个术语是评估模型性能的常用指标。下面是对这些术语的详细解释:

  1. Class
  • 这通常指的是模型被设计用来检测的目标类别。例如,一个模型可能被训练来检测车辆、行人或动物等不同类别的对象。
  1. Images
  • 表示验证集中的图片数量。验证集是用来评估模型性能的数据集,与训练集分开,以确保评估结果的公正性。
  1. Instances
  • 在所有图片中目标对象的总数。这包括了所有类别对象的总和,例如,如果验证集包含100张图片,每张图片平均有5个目标对象,则Instances为500。
  1. P(精确度Precision)
  • 精确度是模型预测为正样本的实例中,真正为正样本的比例。计算公式为:Precision = TP / (TP + FP),其中TP表示真正例(True Positives),FP表示假正例(False Positives)。
  1. R(召回率Recall)
  • 召回率是所有真正的正样本中被模型正确预测为正样本的比例。计算公式为:Recall = TP / (TP + FN),其中FN表示假负例(False Negatives)。
  1. mAP50
  • 表示在IoU(交并比)阈值为0.5时的平均精度(mean Average Precision)。IoU是衡量预测框和真实框重叠程度的指标。mAP是一个综合指标,考虑了精确度和召回率,用于评估模型在不同召回率水平上的性能。在IoU=0.5时,如果预测框与真实框的重叠程度达到或超过50%,则认为该预测是正确的。
  1. mAP50-95
  • 表示在IoU从0.5到0.95(间隔0.05)的范围内,模型的平均精度。这是一个更严格的评估标准,要求预测框与真实框的重叠程度更高。在目标检测任务中,更高的IoU阈值意味着模型需要更准确地定位目标对象。mAP50-95的计算考虑了从宽松到严格的多个IoU阈值,因此能够更全面地评估模型的性能。

这些指标共同构成了评估目标检测模型性能的重要框架。通过比较不同模型在这些指标上的表现,可以判断哪个模型在实际应用中可能更有效。

【使用步骤】

使用步骤:
(1)首先根据官方框架ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8n.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)