Description

Farmer John has noticed that the quality of milk given by his cows varies from day to day. On further investigation, he discovered that although he can't predict the quality of milk from one day to the next, there are some regular patterns in the daily milk quality.

To perform a rigorous study, he has invented a complex classification scheme by which each milk sample is recorded as an integer between 0 and 1,000,000 inclusive, and has recorded data from a single cow over N (1 ≤N ≤ 20,000) days. He wishes to find the longest pattern of samples which repeats identically at least K (2 ≤ K ≤ N) times. This may include overlapping patterns -- 1 2 3 2 3 2 3 1 repeats 2 3 2 3 twice, for example.

Help Farmer John by finding the longest repeating subsequence in the sequence of samples. It is guaranteed that at least one subsequence is repeated at least K times.

Input

Line 1: Two space-separated integers: N and K 
Lines 2..N+1: N integers, one per line, the quality of the milk on day i appears on the ith line.

Output

Line 1: One integer, the length of the longest pattern which occurs at least K times

Sample Input

8 2
1
2
3
2
3
2
3
1

Sample Output

4

求可重叠至少K次的最长子串长度。二分答案,将后缀字符串按height数组分组,满足条件且组内元素个数>=k个,即为可行解

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<queue>
#include<map>
#include<iomanip>
#include<math.h>
using namespace std;
typedef long long ll;
typedef double ld;
#define maxn 1000080
int key[maxn],str[maxn];
int sa[maxn],t[maxn],t2[maxn],c[maxn];
int height[maxn],Rank[maxn];
void build_sa(int * s,int n,int m)
{
int i,*x = t,*y = t2;
for(i = 0; i < m; i++)
c[i] = 0;
for(i = 0; i < n; i++)
c[ x[i] = s[i] ]++;
for(i = 1; i < m; i++)
c[i] += c[i-1];
for(i = n-1; i >= 0; i--)
sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1)
{
int p = 0;
for(i = n - k; i < n; i++)
y[p++] = i;
for(i = 0; i < n; i++)
if(sa[i] >= k)
y[p++] = sa[i] - k;
for(i = 0; i < m; i++)
c[i] = 0;
for(i = 0; i < n; i++)
c[ x[y[i]] ]++;
for(i = 0; i < m; i++)
c[i] += c[i-1];
for(i = n-1; i >= 0; i--)
sa[--c[x[y[i]]]] = y[i];
//根据sa和y数组计算新的x数组
swap(x,y);
p = 1;
x[sa[0]] = 0;
for(i = 1; i < n; i++)
x[sa[i]] = y[sa[i-1]] == y[sa[i]] && y[sa[i-1] + k] == y[sa[i] + k] ? p-1:p++;
if(p >= n)
break;
m = p;
}
}

void getHeight(int * s,int n)
{
int i,j,k = 0;
for(i = 0; i < n; i++)
Rank[sa[i]] = i;
for(i = 0; i < n; i++)
{
if(k)
k--;
int j = sa[Rank[i]-1];
while(s[i+k] == s[j+k])
k++;
height[Rank[i]] = k;
}
}

inline int min(int a,int b)
{
return a>b?b:a;
}

bool check(int n,int k,int num)//长度为k
{
int ans = 1;
for(int i = 2; i <= n; i++)
{
if(height[i]<k)
ans = 1;
else
ans++;
if(ans >= num)
return 1;
}
return 0;
}

int main()
{
//freopen("in.txt","r",stdin);
int n,k;
while(scanf("%d%d",&n,&k)==2)
{
for(int i = 0; i < n; i++)
{
scanf("%d",&key[i]);
key[i]++;
}
key[n] = 0;
build_sa(key,n+1,100038);
getHeight(key,n+1);
int l = 0,r = n;
int ans = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(check(n,mid,k))
{
ans = mid;
l = mid + 1;
}
else
r = mid - 1;
}
printf("%d\n",ans);
}
return 0;
}