Bajtek is learning to skate on ice. He's a beginner, so his only mode of transportation is pushing off from a snow drift to the north, east, south or west and sliding until he lands in another snow drift. He has noticed that in this way it's impossible to get from some snow drifts to some other by any sequence of moves. He now wants to heap up some additional snow drifts, so that he can get from any snow drift to any other one. He asked you to find the minimal number of snow drifts that need to be created.

We assume that Bajtek can only heap up snow drifts at integer coordinates.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 100) — the number of snow drifts. Each of the following n lines contains two integers xi and yi(1 ≤ xi, yi ≤ 1000) — the coordinates of the i-th snow drift.

Note that the north direction coinсides with the direction of Oy axis, so the east direction coinсides with the direction of the Ox axis. All snow drift's locations are distinct.

Output

Output the minimal number of snow drifts that need to be created in order for Bajtek to be able to reach any snow drift from any other one.

Examples

Input


2 2 1 1 2


Output


1


Input


2 2 1 4 1


Output


0


题意:

给出N个雪堆的坐标,雪堆在同一行或者同一列就可以自由滑行,为了保证可以在任意雪堆中自由滑行,最少需要添加多少雪堆才能实现。

首先从第一个点开始找,如果找到和他是同一行或者同一列的就标记为访问过,找到最好退出计数+1,有多少不连通的单独块-1就是需要增加的雪堆数量。

AC代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include<ctime>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
int i,j,k,l;
int n,m;
int ans;
int cnt;
int x[105],y[105];
bool vis[105];
void dfs(int i)
{
vis[i]=true;
for(int j=0;j<n;j++)
{
if(!vis[j]&&(x[i]==x[j]||y[i]==y[j]))
{
dfs(j);
}
}
}

int main()
{
cin>>n;
for(i=0;i<n;i++)
cin>>x[i]>>y[i];
int cnt=0;
for(i=0;i<n;i++)
{
if(!vis[i])
{
dfs(i);
cnt++;
}
}
cnt--;
cout<<cnt<<endl;
return 0;
}