理解ThreadLocal

1.概览:

  • ThreadLocal提供了线程的局部变量,每个线程都可以通过 set() 和 get() 来对这个局部变量进行操作,但不会和其他线程的局部变量进行冲突,实现了线程的数据隔离。简单的来说往 ThreadLocal 中填充的变量是属于当前线程的。设计的目的就是为了能够在当前线程中有属于自己的变量,并不是为了解决并发或者共享变量的问题

2.重要属性:

// threadLocalHashCode 表示当前 ThreadLocal 的 hashCode,用于计算当前 ThreadLocal 在 ThreadLocalMap //中的索引位置
private final int threadLocalHashCode = nextHashCode();
// 计算 ThreadLocal 的 hashCode 值(就是递增)
private static int nextHashCode() {
    return nextHashCode.getAndAdd(HASH_INCREMENT);
}
// static + AtomicInteger 保证了在一台机器中每个 ThreadLocal 的 threadLocalHashCode 是唯一的
// 被 static 修饰非常关键,因为一个线程在处理业务的过程中,ThreadLocalMap 是会被 set 多个 ThreadLocal 的,多个 ThreadLocal 就依靠 threadLocalHashCode 进行区分
private static AtomicInteger nextHashCode = new AtomicInteger();

//还有一个重要属性:ThreadLocalMap,当一个线程有多个 ThreadLocal 时,需要一个容器来管理多个ThreadLocal,ThreadLocalMap 的作用就是这个,管理线程中多个 ThreadLocal。

static class ThreadLocalMap {
        // 数组中的每个节点值,WeakReference 是弱引用,当没有引用指向时,会直接被回收
        static class Entry extends WeakReference<ThreadLocal<?>> {
            // 当前 ThreadLocal 关联的值
            Object value;
            // WeakReference 的引用 referent 就是 ThreadLocal
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
        // 数组的初始化大小
        private static final int INITIAL_CAPACITY = 16;
        // 存储 ThreadLocal 的数组
        private Entry[] table;
        // 扩容的阈值,默认是数组大小的三分之二
        private int threshold;
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-42QGJi5g-1595852033757)(C:\Users\悟空\AppData\Roaming\Typora\typora-user-images\1595835048808.png)]

从源码中看到 ThreadLocalMap 其实就是一个简单的 Map 结构,底层是数组,有初始化大小,也有扩容阈值大小,数组的元素是 Entry,Entry 的 key 就是 ThreadLocal 的引用,value 是 ThreadLocal 的值。

3.源码解析:

3.1 set 方法

set 方法的主要作用是往当前 ThreadLocal 里面 set 值,假如当前 ThreadLocal 的泛型是 Map,那么就是往当前 ThreadLocal 里面 set map,源码如下:

// set 操作每个线程都是串行的,不会有线程安全的问题
public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    // 当前 thradLocal 之前有设置值,直接设置,否则初始化
    if (map != null)
        map.set(this, value);
    // 初始化ThreadLocalMap
    else
        createMap(t, value);
}


private void set(ThreadLocal<?> key, Object value) {
    Entry[] tab = table;
    int len = tab.length;
    // 计算 key 在数组中的下标,其实就是 ThreadLocal 的 hashCode 和数组大小-1取余
    int i = key.threadLocalHashCode & (len-1);

    // 整体策略:查看 i 索引位置有没有值,有值的话,索引位置 + 1,直到找到没有值的位置
    // 这种解决 hash 冲突的策略,也导致了其在 get 时查找策略有所不同,体现在 getEntryAfterMiss 中
    for (Entry e = tab[i];
         e != null;
         // nextIndex 就是让在不超过数组长度的基础上,把数组的索引位置 + 1
         e = tab[i = nextIndex(i, len)]) {
        ThreadLocal<?> k = e.get();
        // 找到内存地址一样的 ThreadLocal,直接替换
        if (k == key) {
            e.value = value;
            return;
        }
        // 当前 key 是 null,说明 ThreadLocal 被清理了,直接替换掉
        if (k == null) {
            replaceStaleEntry(key, value, i);
            return;
        }
    }
    // 当前 i 位置是无值的,可以被当前 thradLocal 使用
    tab[i] = new Entry(key, value);
    int sz = ++size;
    // 当数组大小大于等于扩容阈值(数组大小的三分之二)时,进行扩容
    if (!cleanSomeSlots(i, sz) && sz >= threshold)
        rehash();
}

上面源码我们注意几点:

  1. 是通过递增的 AtomicInteger 作为 ThreadLocal 的 hashCode 的;
  2. 计算数组索引位置的公式是:hashCode 取模数组大小,由于 hashCode 不断自增,所以不同的 hashCode 大概率上会计算到同一个数组的索引位置(但这个不用担心,在实际项目中,ThreadLocal 都很少,基本上不会冲突);
  3. 通过 hashCode 计算的索引位置 i 处如果已经有值了,会从 i 开始,通过 +1 不断的往后寻找,直到找到索引位置为空的地方,把当前 ThreadLocal 作为 key 放进去。

好在日常工作中使用 ThreadLocal 时,常常只使用 1~2 个 ThreadLocal,通过 hash 计算出重复的数组的概率并不是很大。

set 时的解决数组元素位置冲突的策略,也对 get 方法产生了影响,接着我们一起来看一下 get 方法。

3.2 get方法

get 方法主要是从 ThreadLocalMap 中拿到当前 ThreadLocal 储存的值,源码如下

public T get() {
    // 因为 threadLocal 属于线程的属性,所以需要先把当前线程拿出来
    Thread t = Thread.currentThread();
    // 从线程中拿到 ThreadLocalMap
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        // 从 map 中拿到 entry,由于 ThreadLocalMap 在 set 时的 hash 冲突的策略不同,导致拿的时候逻辑也不太一样
        ThreadLocalMap.Entry e = map.getEntry(this);
        // 如果不为空,读取当前 ThreadLocal 中保存的值
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    // 否则给当前线程的 ThreadLocal 初始化,并返回初始值 null
    return setInitialValue();
}


// 得到当前 thradLocal 对应的值,值的类型是由 thradLocal 的泛型决定的
// 由于 thradLocalMap set 时解决数组索引位置冲突的逻辑,导致 thradLocalMap get 时的逻辑也是对应的
// 首先尝试根据 hashcode 取模数组大小-1 = 索引位置 i 寻找,找不到的话,自旋把 i+1,直到找到索引位置不为空为止
private Entry getEntry(ThreadLocal<?> key) {
    // 计算索引位置:ThreadLocal 的 hashCode 取模数组大小-1
    int i = key.threadLocalHashCode & (table.length - 1);
    Entry e = table[i];
    // e 不为空,并且 e 的 ThreadLocal 的内存地址和 key 相同,直接返回,否则就是没有找到,继续通过 getEntryAfterMiss 方法找
    if (e != null && e.get() == key)
        return e;
    else
    // 这个取数据的逻辑,是因为 set 时数组索引位置冲突造成的  
        return getEntryAfterMiss(key, i, e);
}

// 自旋 i+1,直到找到为止
private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
    Entry[] tab = table;
    int len = tab.length;
    // 在大量使用不同 key 的 ThreadLocal 时,其实还蛮耗性能的
    while (e != null) {
        ThreadLocal<?> k = e.get();
        // 内存地址一样,表示找到了
        if (k == key)
            return e;
        // 删除没用的 key
        if (k == null)
            expungeStaleEntry(i);
        // 继续使索引位置 + 1
        else
            i = nextIndex(i, len);
        e = tab[i];
    }
    return null;
}

3.3扩容方法resize

//扩容
private void resize() {
    // 拿出旧的数组
    Entry[] oldTab = table;
    int oldLen = oldTab.length;
    // 新数组的大小为老数组的两倍
    int newLen = oldLen * 2;
    // 初始化新数组
    Entry[] newTab = new Entry[newLen];
    int count = 0;
    // 老数组的值拷贝到新数组上
    for (int j = 0; j < oldLen; ++j) {
        Entry e = oldTab[j];
        if (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null; // Help the GC
            } else {
                // 计算 ThreadLocal 在新数组中的位置
                int h = k.threadLocalHashCode & (newLen - 1);
                // 如果索引 h 的位置值不为空,往后+1,直到找到值为空的索引位置
                while (newTab[h] != null)
                    h = nextIndex(h, newLen);
                // 给新数组赋值
                newTab[h] = e;
                count++;
            }
        }
    }
    // 给新数组初始化下次扩容阈值,为数组长度的三分之二
    setThreshold(newLen);
    size = count;
    table = newTab;
}

源码注解也比较清晰,我们注意两点:

  1. 扩容后数组大小是原来数组的两倍;
  2. 扩容时是绝对没有线程安全问题的,因为 ThreadLocalMap 是线程的一个属性,一个线程同一时刻只能对 ThreadLocalMap 进行操作,因为同一个线程执行业务逻辑必然是串行的,那么操作 ThreadLocalMap 必然也是串行的

3.4小结:

  • 每个 Thread 维护着一个 ThreadLocalMap 的引用
  • ThreadLocalMap 是 ThreadLocal 的内部类,用 Entry 来进行存储
  • 调用 ThreadLocal 的 set() 方法时,实际上就是往 ThreadLocalMap 设置值,key 是 ThreadLocal 对象,值是传递进来的对象
  • 调用 ThreadLocal 的 get() 方法时,实际上就是往 ThreadLocalMap 获取值,key 是 ThreadLocal 对象
  • ThreadLocal 本身并不存储值,它只是作为一个 key 来让线程从 ThreadLocalMap 获取 value。

4.使用场景:

4.1Spring采用Threadlocal的方式,来保证单个线程中的数据库操作使用的是同一个数据库连接,同时,采用这种方式可以使业务层使用事务时不需要感知并管理connection对象,通过传播级别,巧妙地管理多个事务配置之间的切换,挂起和恢复。

Spring框架里面就是用的ThreadLocal来实现这种隔离,主要是在TransactionSynchronizationManager这个类里面,代码如下所示:

private static final Log logger = LogFactory.getLog(TransactionSynchronizationManager.class);

 private static final ThreadLocal<Map<Object, Object>> resources =
   new NamedThreadLocal<>("Transactional resources");

 private static final ThreadLocal<Set<TransactionSynchronization>> synchronizations =
   new NamedThreadLocal<>("Transaction synchronizations");

 private static final ThreadLocal<String> currentTransactionName =
   new NamedThreadLocal<>("Current transaction name");

  ……

ps:来自三太子敖丙公众号

4.2自己项目中的应用

我在项目中存在一个线程经常遇到横跨若干方法调用,需要传递的对象,也就是上下文(Context),它是一种状态,经常就是是用户身份、任务信息等,就会存在过渡传参的问题。

给每个方法增加一个context参数非常麻烦。所以我使用到了ThreadLocal去做了一下改造,这样只需要在调用前在ThreadLocal中设置参数,其他地方get一下就好了。

我在项目中,就通过包装了一下ThreadLocal,作为容器,代替session对象存储用户信息。判断当前ThreadLocal中是否存储了user对象,没有则视为未登录,就无法访问某功能。

/**
 * 持有用户信息,用于代替session对象.
 */
@Component
public class HostHolder {

    private ThreadLocal<User> users = new ThreadLocal<>();

    public void setUser(User user) {
        users.set(user);
    }

    public User getUser() {
        return users.get();
    }

    public void clear() {
        users.remove();
    }

}

5.常见问题、

5.1ThreadLocal的使用

线程进来之后初始化一个可以泛型的ThreadLocal对象,之后这个线程只要在remove之前去get,都能拿到之前set的值,注意这里我说的是remove之前。

他是能做到线程间数据隔离的,所以别的线程使用get()方法是没办法拿到其他线程的值的,

5.2ThreadLocalMap的底层结构?如何解决hash冲突的?

ThreadLocalMap底层其实就是一个简单的 Map 结构,底层是数组,初始化大小是16,也有扩容阈值大小,默认是数组大小的三分之二,数组的元素是 Entry,Entry 的 key 就是 ThreadLocal 的引用,value 是 ThreadLocal 的值。他的Entry是继承WeakReference(弱引用)的,也没有看到HashMap中的next,所以不存在链表了。

那它是如何解决hash冲突的呢?

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WHLlrw6M-1595852033765)(C:\Users\悟空\AppData\Roaming\Typora\typora-user-images\1595839680637.png)]

ThreadLocalMap在存储的时候会给每一个ThreadLocal对象一个threadLocalHashCode,在插入过程中,根据ThreadLocal对象的hash值,定位到table中的位置i,int i = key.threadLocalHashCode & (len-1)

然后会判断一下:如果当前位置是空的,就初始化一个Entry对象放在位置i上;

如果位置i不为空,如果这个Entry对象的key正好是即将设置的key,那么就刷新Entry中的value;

如果位置i的不为空,而且key不等于entry,那就找下一个空位置,直到为空为止。

这样的话,在get的时候,也会根据ThreadLocal对象的hash值,定位到table中的位置,然后判断该位置Entry对象中的key是否和get的key一致,如果不一致,就判断下一个位置,set和get如果冲突严重的话,效率还是很低的。

5.3能跟我说一下对象存放在哪里么?

在Java中,栈内存归属于单个线程,每个线程都会有一个栈内存,其存储的变量只能在其所属线程中可见,即栈内存可以理解成线程的私有内存,而堆内存中的对象对所有线程可见,堆内存中的对象可以被所有线程访问。

5.4那么是不是说ThreadLocal的实例以及其值存放在栈上呢?

其实不是的,因为ThreadLocal实例实际上也是被其创建的类持有(更顶端应该是被线程持有),而ThreadLocal的值其实也是被线程实例持有,它们都是位于堆上,只是通过一些技巧将可见性修改成了线程可见。

5.5如果我想共享线程的ThreadLocal数据怎么办?

使用InheritableThreadLocal可以实现多个线程访问ThreadLocal的值,我们在主线程中创建一个InheritableThreadLocal的实例,然后在子线程中得到这个InheritableThreadLocal实例设置的值。

private void test() {    
final ThreadLocal threadLocal = new InheritableThreadLocal();       
threadLocal.set("帅得一匹");    
Thread t = new Thread() {        
    @Override        
    public void run() {            
      super.run();            
      Log.i( "张三帅么 =" + threadLocal.get());        
    }    
  };          
  t.start(); 
}

在子线程中我是能够正常输出那一行日志的,这也是我之前面试视频提到过的父子线程数据传递的问题。

5.6怎么传递的呀?

传递的逻辑很简单,我在开头Thread代码提到threadLocals的时候,你们再往下看看我刻意放了另外一个变量:

理解ThreadLocal_取模

Thread源码中,我们看看Thread.init初始化创建的时候做了什么:

public class Thread implements Runnable {
  ……
   if (inheritThreadLocals && parent.inheritableThreadLocals != null)
      this.inheritableThreadLocals=ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);
  ……
}

我就截取了部分代码,如果线程的inheritThreadLocals变量不为空,比如我们上面的例子,而且父线程的inheritThreadLocals也存在,那么我就把父线程的inheritThreadLocals给当前线程的inheritThreadLocals

5.7ThreadLocal 内存泄漏

由于 ThreadLocalMap 的生命周期跟 Thread 一样长,如果没有手动删除对应 key 就会导致内存泄漏,而不是因为弱引用。想要避免内存泄露就要手动 remove() 掉!

// 数组中的每个节点值,WeakReference 是弱引用,当没有引用指向时,会直接被回收
        static class Entry extends WeakReference<ThreadLocal<?>> {
            // 当前 ThreadLocal 关联的值
            Object value;
            // WeakReference 的引用 referent 就是 ThreadLocal
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }

ThreadLocal在保存的时候会把自己当做Key存在ThreadLocalMap中,正常情况应该是key和value都应该被外界强引用才对,但是现在key被设计成WeakReference弱引用了。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6MtpMxVX-1595852033790)(C:\Users\悟空\AppData\Roaming\Typora\typora-user-images\1595851618738.png)]

  • 什么是弱引用?

只具有弱引用的对象拥有更短暂的生命周期,在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象

这就导致了一个问题,ThreadLocal在没有外部强引用时,发生GC时会被回收,如果创建ThreadLocal的线程一直持续运行,那么这个Entry对象中的value就有可能一直得不到回收,发生内存泄露。

就比如线程池里面的线程,线程都是复用的,那么之前的线程实例处理完之后,出于复用的目的线程依然存活,所以,ThreadLocal设定的value值被持有,导致内存泄露。

按照道理一个线程使用完,ThreadLocalMap是应该要被清空的,但是现在线程被复用了

  • 怎么解决?

在代码的最后使用remove就好了,我们只要记得在使用的最后用remove把值清空就好了。

ThreadLocal<String> localName = new ThreadLocal();
try {
    localName.set("张三");
    ……
} finally {
    localName.remove();
}

remove的源码很简单,找到对应的值全部置空,这样在垃圾回收器回收的时候,会自动把他们回收掉。

5.8那为什么ThreadLocalMap的key要设计成弱引用?

key不设置成弱引用的话就会造成和entry中value一样内存泄漏的场景。

5.9ThreadLocal 和同步机制的区别

在同步机制中,通过对象的锁机制保证同一时间只有一个线程访问变量。这时该变量是多个线程共享的,使用同步机制要求程序缜密地分析什么时候对变量进行读写,什么时候需要锁定某个对象,什么时候释放对象锁等繁杂的问题,程序设计和编写难度相对较大。

而 ThreadLocal 则从另一个角度来解决多线程的并发访问。ThreadLocal 为每一个线程提供一个独立的变量副本,从而隔离了多个线程对访问数据的冲突。因为每一个线程都拥有自己的变量副本,从而也就没有必要对该变量进行同步了。ThreadLocal 提供了线程安全的对象封装,在编写多线程代码时,可以把不安全的变量封装进ThreadLocal。

由于 ThreadLocal 中可以持有任何类型的对象,低版本 JDK 所提供的 get( ) 返回的是 Object 对象,需要强制类型转换。但 JDK 5.0 通过泛型很好的解决了这个问题,在一定程度上简化 ThreadLocal 的使用,代码清单9-2就使用了 JDK 5.0 新的 ThreadLocal版本

synchronized 关键字也用来解决多线程环境下访问变量的问题,这两者的区别在于 ThreadLocal 是用空间换取时间,synchronized 关键字是用时间换空间。

整理自:

https://xiaorui2.github.io/2019/08/15/%E7%90%86%E8%A7%A3ThreadLocal/

https://mp.weixin.qq.com/s/LzkZXPtLW2dqPoz3kh3pBQ

https://www.imooc.com/read/47/article/885