一、实验名称
图像的灰度变换与直方图修正
二、实验目的
1.熟悉MATLAB软件的使用。
2.掌握灰度变换、直方图修正的原理及数学运算。
3.于MATLAB环境下编程实现对图片的灰度变换和直方图修正。
三、实验内容
1.对于给定图片,在MATLAB软件下编程实现对图片的不同程度的灰度变换。
2.对于给定图片,在MATLAB软件下编程实现对图片的不同程度的直方图修正。
四、实验仪器与设备
Win10 64位电脑
MATLAB2017a
五、实验原理
灰度变换
线性变换:fa>1时,输出图像的对比度将增大;fa<1时,输出图像对比度将减小。Fa=1且fb非零时,所有像素的灰度值上移或者下移,使得整个图像更暗或者更亮。Fa<0,暗区变亮,亮区变暗。
对数变换:可以增强一副图像中较暗部分的细节,用来拓展被压缩的高值图像中的较暗像素。
指数变换:可以增强一副图像中较亮部分的细节。
取反:亮变暗,暗变亮。
直方图均衡化
步骤
1、 计算出每个灰度级的概率
2、计算出灰度累加概率
3、累加概率乘以length-1再取整
4、更新灰度级
具体解法:
利用循环,算出累积概率,灰度级为0时,累积概率为0.02,灰度级为1时,为0.02+0.05=0.07 。。。。。
再分别乘以7,取整,
得到最后的灰度
直方图SML、GML映射
步骤
1.分别计算出原图直方图、规定直方图的累加概率
2.分别用GML、SML映射
3.获取更新后的数据
具体解题
分别利用循环计算出原图和规定图的累积概率,
SML映射规则下,先看原图累积直方图中的0.1,然后在规定直方图累积找最靠近的那个值,是0.3,所以灰度级由0变成1,依次类推
GML映射规则下,先看规定累积直方图中的0.3,然后在原图累积直方图中找到最靠近的那个,是0.3,对应的灰度是2,所以2,2以前的灰度值都变成1,依次类推
六、实验过程及代码
灰度变换
1)线性变换
直方图均衡化
七、实验结果与分析
图 1原图
灰度变换
图 2线性变换
图 3线性变换直方图
图 4对数变换
图 5指数变换
图 6取反
灰度变换分析
线性变换:fa>1时,输出图像的对比度将增大;fa<1时,输出图像对比度将减小。Fa=1且fb非零时,所有像素的灰度值上移或者下移,使得整个图像更暗或者更亮。Fa<0,暗区变亮,亮区变暗。
对数变换:可以增强一副图像中较暗部分的细节,用来拓展被压缩的高值图像中的较暗像素。
指数变换:可以增强一副图像中较亮部分的细节,用来拓展被压缩的高值图像中的较亮像素。
取反:与原来的图像成鲜明的对比,暗区变亮区,亮区变暗区。
直方图均衡化
GML、SML映射
八、实验总结及心得体会
在这次实验中,自己学到了利用一些简单数学函数对数字图像进行处理,比如简单的线性变换、对数、指数变换等,利用这些简单操作,可以对图像进行一些处理,达到一定的效果。刚开始的时候,对图像处理的概念不是很强,通过这次的学习,了解到对图像进行处理,其实无非就是对图片中的一些像素点进行处理,而像素点代表的值就是图像的灰度值。在直方图的均衡化和GML、SML映射中,发现可以利用已学C++的知识来进行解题。在两种映射方法中,最难的还是GML,这里还是下了一定的功夫的。
附:SML-GML算法验证
直方图规定化
原理:
所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。说的通俗一点就是,原图像的灰度是从0~255的,其分布是随机的,在一些情况下,我们可能需要一些特定的灰度值,比如我们只需要灰度值为0 3 40 240 255 这些值,除此之外的灰度值我们不需要,那么从原图像到我们需要的图像就可以理解成图像的规定化。
具体事例:
左图是原图像的灰度直方图,右图是我们需要的图(这里的需要是指需要灰度由原来的0~7变成规定的1 3 6,规定化后图像的纵坐标是会变的,这里只需要横坐标吻合就行!)
规定化后的图像(横坐标和规定一样,纵坐标是会变化的):
实现步骤:
- 分别计算出原图像和规定图像的累加直方图
- 利用SML或者GML映射灰度值
- 利用更新后的映射表转换原图像的灰度值
看完之后,应该还是不懂?那么直接实战一题!题目见下图:
解题步骤:
- 这里是直接给出的原图像各灰度的像素个数,为了得到我们需要的直方累加图(其实是概率累加值,当然也可以不用概率,直接用像素点数也行,就是看起来数字比较大),需要先算出原图像各灰度的概率(占总像素个数的比例),然后在计算累加值 2. 根据给出的规定直方图,同样的方法计算累加直方图,见下图 3. 利用SML映射规则得出结果
- 利用映射变化表,更新原图像
提示:
这里可能不懂SML映射规则,我说说自己简单的理解(自己也可以自行百度):
SML就是单映射,这里我们关注原图累加直方图和规定累加直方图,所谓SML,就是从原图累加直方图开始,在规定累加直方图寻找和自己最接近的值,然后把它的灰度值变成自己的。具体来说,原图第一个累加概率是0.19,在规定累加直方图中,最接近它的就是0.15,那么原图的灰度0变成规定的3,第二个累加概率是0.44,最接近规定累加直方图的0.35,所以由1变成4,同理,依次遍历完原图累加直方图的概率就行,在规定累加直方图找到最靠近自己的值,最后进行灰度变化。
SML规则懂了,GML规则也就好理解了(GML规则其实编程更难):
SML中,我们是依次遍历原图累加直方图,在规定累加直方图寻找最靠近自己的。在GML(组映射)中,就变成了依次从规定累加直方图中,对比原图累加直方图,也是找到最靠近的值,进行灰度变换,只是这里的变换规则变了。
具体举例来说,从上图看,这里我们这里从规定累加直方图的0.15看,前面的0其实不用看,再从原始累加直方图找到最接近0.15的值,是0.19,那么0.19对应和它对应灰度值前面的灰度变成规定累加直方图中0.15所对应的灰度值:3;第二个看规定累加直方图的0.35,靠近原图的0.44,那么原图的1变成4(假设这里0.44对应的原图灰度值为4,那么在前一个不为0和4之间变成4)
这里有的不好理解,举个例子:
原数组:1 0 0 2 0 3 0 0 0 4 0 0 6
GML映射变化规则的目标数组就是:1 2 2 2 3 3 4 4 4 4 6 6 6
解释:1前面的数变为1,1和2之间变成2,2和3之间变成3,3和4之间变成4,4和6之间变成6,简单的说就是变0变成后面最靠近的一个不为0的数。(这里算法自己需要掌握,即如何从原数组变成目标数组,这里先给个C++的验证算法)
如果还是不懂SML和GML规则的话?那自己根据下面两种图片再理解理解吧。
MATLAB实战
原理懂了,肯定就是要开始实战了啊!
这里我先上全部代码:
效果图:
总结
SML、GML两个算法用来一天才搞清楚原理,书上的公式开始看真的是好难啊,看不进去,网上的方法,真的是,没有自己想要的。算法其实一天就搞定了,当时由于MATLAB语法还不是很熟,走了很多弯路。下面总结下自己的踩坑吧:
- MATLAB里面的循环写法 for i=1:256 c++:for(i=1;i<=256;i++)
- for、if等用end结束,end个数必须和if、for配对,比如,3个for,2个if,就必须有5个end结束,不然程序会一直执行下去
- 程序语句最后有无 ; 的区别:写了 ; 本地代码区不会显示具体数据,反之不写,则会显示,建议还是写吧,和c++语法类似。
- 多打印数据,一步一步调试,便于寻找bug
更多
获取更多资料、代码,微信公众号:海轰Pro
回复 海轰 即可