LeetCode: 139. Word Break

题目描述

Given a non-empty string ​​s​​​ and a dictionary ​​wordDict​​ containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

Note:

  • The same word in the dictionary may be reused multiple times in the segmentation.
  • You may assume the dictionary does not contain duplicate words.

Example 1:

Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".

Example 2:

Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.

Example 3:

Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false

题目大意: 判断给定字符串 ​​s​​​ 是否能由给定的单词表 ​​wordDict​​ 中的单词拼凑出。

解题思路 —— 动态规划

  1. 描述最优解的结构。记 ​​frontWordBreak[i]​​​ 为 ​​s​​​ 串是否能够由 ​​wordDict​​ 中的字符串拼凑成。
  2. 递归地定义最优解的值。如果 ​​s​​​ 串在 ​​[i, j)​​​ 区间的子串能在 ​​wordDict​​​ 中找到,则 ​​frontWordBreak[j]​​​ 的值取决于 ​​frontWordBreak[i]​​ 的值。 状态转移方程如下图:
  3. 自底向上计算最优解的值
For i From 1 To s.size Do
For j From 0 To wordDict.size - 1 Do
If s[i-wordDict[j].size...wordDict[j].size] = wordDict[j]
frontWordBreak[i] := (frontWordBreak[i] || i-wordDict[j].size);
  1. 例子。下表是对 Example 1 进行的分析。每一行代表 ​​frontWordBreak​​ 在某个时间的状态。

AC 代码

class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
// frontWordBreak[i]: s 串的前 i 个字符是否能在 wordDict 中拼凑出
vector<bool> frontWordBreak(s.size() + 1, false);

//初始化:定义空串能被 wordDict 拼凑出
frontWordBreak[0] = true;

for(size_t i = 1; i <= s.size(); ++i)
{
for(size_t j = 0; j < wordDict.size(); ++j)
{
if(wordDict[j].size() > i) continue;

// 自底向上计算最优解的值
if(s.substr(i-wordDict[j].size(), wordDict[j].size()) == wordDict[j]
&& !frontWordBreak[i])
{
frontWordBreak[i] = frontWordBreak[i-wordDict[j].size()];
}
}
}

return frontWordBreak.back();
}
};