0x01. 案例背景

IHDP(Infant Health and Development Program)就是一个半合成的典型数据集,用于研究 “专家是否家访” 对 “婴儿日后认知测验得分” 之间的关系。原数据集是基于随机控制实验进行的,因此可以获得因果干预效应的groud truth。为了实现观察性研究数据的数据有偏特点,特意从原数据干预组中有偏向性地去除了一部分数据引入选择偏倚。该数据集共包含747个样本(干预组: 139; 控制组: 608), 共包含25个协变量涉及孩童和其母亲的各项属性。

0x02. 开始实验

0x02_1. 导入要使用的包

# importing required libraries
import dowhy
from dowhy import CausalModel
import pandas as pd
import numpy as np

0x02_2. 读取数据

数据的地址为:IHDP数据集

代码中读取数据会报错,因此我自行将数据整理成csv格式,放在本地读取了。

# 原始数据读取方式,因网络问题读取失败
# data= pd.read_csv("https://raw.githubusercontent.com/AMLab-Amsterdam/CEVAE/master/datasets/IHDP/csv/ihdp_npci_1.csv", header = None)
# 使用整理的本地化数据读取
data = pd.read_csv("data/ihdp.csv", header = None)
data

数据的原始格式如下表:

0

1

2

3

4

5

6

7

8

9


20

21

22

23

24

25

26

27

28

29

0

1

5.599916

4.318780

3.268256

6.854457

-0.528603

-0.343455

1.128554

0.161703

-0.316603


1

1

1

1

0

0

0

0

0

0

1

0

6.875856

7.856495

6.636059

7.562718

-1.736945

-1.802002

0.383828

2.244320

-0.629189


1

1

1

1

0

0

0

0

0

0

2

0

2.996273

6.633952

1.570536

6.121617

-0.807451

-0.202946

-0.360898

-0.879606

0.808706


1

0

1

1

0

0

0

0

0

0

3

0

1.366206

5.697239

1.244738

5.889125

0.390083

0.596582

-1.850350

-0.879606

-0.004017


1

0

1

1

0

0

0

0

0

0

4

0

1.963538

6.202582

1.685048

6.191994

-1.045229

-0.602710

0.011465

0.161703

0.683672


1

1

1

1

0

0

0

0

0

0

0x02_3. 数据处理

col =  ["treatment", "y_factual", "y_cfactual", "mu0", "mu1" ,]
for i in range(1,26):
    col.append("x"+str(i))
data.columns = col
data = data.astype({"treatment":'bool'}, copy=False)
data.head()

数据输出结构如图:

treatment

y_factual

y_cfactual

mu0

mu1

x1

x2

x3

x4

x5


x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

0

True

5.599916

4.318780

3.268256

6.854457

-0.528603

-0.343455

1.128554

0.161703

-0.316603


1

1

1

1

0

0

0

0

0

0

1

False

6.875856

7.856495

6.636059

7.562718

-1.736945

-1.802002

0.383828

2.244320

-0.629189


1

1

1

1

0

0

0

0

0

0

2

False

2.996273

6.633952

1.570536

6.121617

-0.807451

-0.202946

-0.360898

-0.879606

0.808706


1

0

1

1

0

0

0

0

0

0

3

False

1.366206

5.697239

1.244738

5.889125

0.390083

0.596582

-1.850350

-0.879606

-0.004017


1

0

1

1

0

0

0

0

0

0

4

False

1.963538

6.202582

1.685048

6.191994

-1.045229

-0.602710

0.011465

0.161703

0.683672


1

1

1

1

0

0

0

0

0

0

0x02_4. Model

# Create a causal model from the data and given common causes.
model=CausalModel(
        data = data,
        treatment='treatment',
        outcome='y_factual',
        common_causes=["x"+str(i) for  i in range(1,26)]
        )
model.view_model()
from IPython.display import Image, display
display(Image(filename="causal_model.png"))

输出结果如图所示:

因果推断dowhy之-ihdp数据集上的案例学习_学习


妈的,这吊图真是画质渣渣。。。图中将因果推断dowhy之-ihdp数据集上的案例学习_ide_02因果推断dowhy之-ihdp数据集上的案例学习_python_03特征作为共同原因,treatment为数据的treatment,输出为y_factual,共同原因既作用于treatment又作用于y_factual

0x02_5. Identify

#Identify the causal effect
identified_estimand = model.identify_effect(proceed_when_unidentifiable=True, method_name="maximal-adjustment")
print(identified_estimand)

输出结果如下:

Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
     d                                                                        
────────────(E[y_factual|x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x2
d[treatment]                                                                  
  
3,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16])

Estimand assumption 1, Unconfoundedness: If U→{treatment} and U→y_factual then P(y_factual|treatment,x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x23,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16,U) = P(y_factual|treatment,x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x23,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16)

### Estimand : 2
Estimand name: iv
No such variable(s) found!

### Estimand : 3
Estimand name: frontdoor
No such variable(s) found!

0x02_6. Estimate

0x02_6_1. 使用线性回归

# Estimate the causal effect and compare it with Average Treatment Effect
estimate = model.estimate_effect(identified_estimand,
        method_name="backdoor.linear_regression", test_significance=True
)

print(estimate)

print("Causal Estimate is " + str(estimate.value))
data_1 = data[data["treatment"]==1]
data_0 = data[data["treatment"]==0]

print("ATE", np.mean(data_1["y_factual"])- np.mean(data_0["y_factual"]))

输出结果如下:

*** Causal Estimate ***

## Identified estimand
Estimand type: EstimandType.NONPARAMETRIC_ATE

### Estimand : 1
Estimand name: backdoor
Estimand expression:
     d                                                                        
────────────(E[y_factual|x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x2
d[treatment]                                                                  
                                       
3,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16])

Estimand assumption 1, Unconfoundedness: If U→{treatment} and U→y_factual then P(y_factual|treatment,x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x23,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16,U) = P(y_factual|treatment,x10,x18,x1,x25,x15,x4,x12,x9,x11,x13,x6,x17,x5,x20,x23,x8,x2,x24,x7,x19,x22,x14,x21,x3,x16)

## Realized estimand
b: y_factual~treatment+x10+x18+x1+x25+x15+x4+x12+x9+x11+x13+x6+x17+x5+x20+x23+x8+x2+x24+x7+x19+x22+x14+x21+x3+x16
Target units: ate

## Estimate
Mean value: 3.9286717508727156

Causal Estimate is 3.9286717508727156
ATE 4.021121012430829

0x02_6_2. 使用propensity_score_matching Stratification

estimate = model.estimate_effect(identified_estimand,
        method_name="backdoor.propensity_score_matching"
)

print("Causal Estimate is " + str(estimate.value))

print("ATE", np.mean(data_1["y_factual"])- np.mean(data_0["y_factual"]))

输出如下:

Causal Estimate is 3.97913882321704
ATE 4.021121012430829

0x02_6_3. 使用Propensity Score Stratification

estimate = model.estimate_effect(identified_estimand,
        method_name="backdoor.propensity_score_stratification", method_params={'num_strata':50, 'clipping_threshold':5}
)

print("Causal Estimate is " + str(estimate.value))
print("ATE", np.mean(data_1["y_factual"])- np.mean(data_0["y_factual"]))

输出如下:

Causal Estimate is 3.4550471588628207
ATE 4.021121012430829

0x02_6_4. 使用Propensity Score Weighting

estimate = model.estimate_effect(identified_estimand,
        method_name="backdoor.propensity_score_weighting"
)

print("Causal Estimate is " + str(estimate.value))

print("ATE", np.mean(data_1["y_factual"])- np.mean(data_0["y_factual"]))

输出为:

Causal Estimate is 3.9286717508727156
ATE 4.021121012430829

0x02_7. Refute

0x02_7_1. 使用random_common_cause

refute_results=model.refute_estimate(identified_estimand, estimate,
        method_name="random_common_cause")
print(refute_results)

输出结果如下:

Refute: Add a random common cause
Estimated effect:3.4550471588628207
New effect:3.4550471588628215
p value:2.0

0x02_7_2. 使用placebo_treatment_refuter

res_placebo=model.refute_estimate(identified_estimand, estimate,
        method_name="placebo_treatment_refuter")
print(res_placebo)

输出结果如下:

Refute: Use a Placebo Treatment
Estimated effect:3.4550471588628207
New effect:-0.00207657716864257
p value:0.88

0x02_7_3. 使用data_subset_refuter

res_subset=model.refute_estimate(identified_estimand, estimate,
        method_name="data_subset_refuter", subset_fraction=0.9)
print(res_subset)

输出结果如下:

Refute: Use a subset of data
Estimated effect:3.4550471588628207
New effect:3.466444805696942
p value:0.9

0x03. 总结

本案例按照标准DoWhy标准流程进行,实现因果的分析的结果。