While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University,noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith’s telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:
4937775= 3*5*5*65837
The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However,Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!
Input
The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.
Output
For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n,and print it on a line by itself. You can assume that such a number exists.
Sample Input
4937774
0
Sample Output
4937775
给一个数,找到比这个数大的数x,x需要满足各位数和与其分解质因子之后的位数和相同
设f(x)为x的位数和
则f(x)=f(x的因子) f ( x ) = f ( x 的 因 子 )
eg:
4937775=3∗5∗5∗65837 4937775 = 3 ∗ 5 ∗ 5 ∗ 65837
4+9+3+7+7+7+5=42 4 + 9 + 3 + 7 + 7 + 7 + 5 = 42
3+5+5+6+5+8+3+7=42 3 + 5 + 5 + 6 + 5 + 8 + 3 + 7 = 42
code