⚡本系列历史文章⚡

【Momentum优化器】​​
​​【Nesterov accelerated gradient优化器】​​
​​【RMSprop优化器】​​
​​【Adagrad优化器】​​
​​【Adadelta优化器】​​
​​【Adam优化器】


Adam优化原理

自适应矩估计(Adam)是计算每个参数的自适应学习率的另一种方法。除了存储过去平方梯度(如Adadelta和RMSprop)的指数衰减平均值外,Adam还保持过去梯度的指数衰减平均值,类似于动量:
【机器学习】numpy实现Adam优化器_梯度下降
它们通过计算偏差修正的第一和第二矩估计值来抵消这些偏差:
【机器学习】numpy实现Adam优化器_深度学习_02
然后,他们使用这些来更新参数,正如我们在Adadelta和RMSprop中看到的那样,这产生了Adam更新规则:
【机器学习】numpy实现Adam优化器_深度学习_03
作者建议的默认值是 【机器学习】numpy实现Adam优化器_梯度下降_04【机器学习】numpy实现Adam优化器_深度学习_05,他们的经验表明,Adam在实践中运行良好,并优于其他自适应学习方法算法。

迭代过程

【机器学习】numpy实现Adam优化器_深度学习_06

代码实践

import numpy as np
import matplotlib.pyplot as plt

class Optimizer:
def __init__(self,
epsilon = 1e-10, # 误差
iters = 100000, # 最大迭代次数
lamb = 0.01, # 学习率
gamma = 0.9,
theta = 1e-8,
beta1 = 0.9,
beta2 = 0.999): # 常数
self.epsilon = epsilon
self.iters = iters
self.lamb = lamb
self.gamma = gamma
self.theta = theta
self.beta1 = beta1
self.beta2 = beta2

def adam(self, x_0 = 0.5, y_0 = 0.5):
f1, f2 = self.fn(x_0, y_0), 0
w = np.array([x_0, y_0]) # 每次迭代后的函数值,用于绘制梯度曲线
k = 0 # 当前迭代次数
m_t = 0.0
v_t = 0.0

while True:
if abs(f1 - f2) <= self.epsilon or k > self.iters:
break

f1 = self.fn(x_0, y_0)

g = np.array([self.dx(x_0, y_0), self.dy(x_0, y_0)])

m_t = self.beta1 * m_t + (1 - self.beta1) * g
v_t = self.beta2 * v_t + (1 - self.beta2) * np.dot(g, g)

m_hat = m_t / (1 - self.beta1)
v_hat = v_t / (1 - self.beta2)

x_0, y_0 = np.array([x_0, y_0]) - self.lamb / (self.theta + np.sqrt(v_hat)) * m_hat

f2 = self.fn(x_0, y_0)

w = np.vstack((w, (x_0, y_0)))
k += 1

self.print_info(k, x_0, y_0, f2)
self.draw_process(w)

def print_info(self, k, x_0, y_0, f2):
print('迭代次数:{}'.format(k))
print('极值点:【x_0】:{} 【y_0】:{}'.format(x_0, y_0))
print('函数的极值:{}'.format(f2))

def draw_process(self, w):
X = np.arange(0, 1.5, 0.01)
Y = np.arange(-1, 1, 0.01)
[x, y] = np.meshgrid(X, Y)
f = x**3 - y**3 + 3 * x**2 + 3 * y**2 - 9 * x
plt.contour(x, y, f, 20)
plt.plot(w[:, 0],w[:, 1], 'g*', w[:, 0], w[:, 1])
plt.show()

def fn(self, x, y):
return x**3 - y**3 + 3 * x**2 + 3 * y**2 - 9 * x

def dx(self, x, y):
return 3 * x**2 + 6 * x - 9

def dy(self, x, y):
return - 3 * y**2 + 6 * y

"""
函数: f(x) = x**3 - y**3 + 3 * x**2 + 3 * y**2 - 9 * x
最优解: x = 1, y = 0
极小值: f(x,y) = -5
"""
optimizer = Optimizer()
optimizer.adam()