HDU Palindrome subsequence(区间DP)
原创
©著作权归作者所有:来自51CTO博客作者wx634e39bb59725的原创作品,请联系作者获取转载授权,否则将追究法律责任
Palindrome subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65535 K (Java/Others)
Total Submission(s): 2836 Accepted Submission(s): 1160
Problem Description
In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example, the sequence
//
// main.cpp
// 区间dp 1001
//
// Created by 陈永康 on 16/2/28.
// Copyright © 2016年 陈永康. All rights reserved.
//
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
char a[1005];
int dp[1005][1005];
int main()
{
int t;
scanf("%d",&t);
int cas=0;
while(t--)
{
scanf("%s",a+1);
int len=strlen(a+1);
memset(dp,0,sizeof(dp));
for(int i=1;i<=len;i++)
dp[i][i]=1;
for(int l=1;l<len;l++)
{
for(int i=1;i+l<=len;i++)
{
int j=i+l;
dp[i][j]=(dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]+10007)%10007;
if(a[i]==a[j])
dp[i][j]=(dp[i][j]+dp[i+1][j-1]+1+10007)%10007;
//dp[i][j]%=10007;
}
}
printf("Case %d: %d\n",++cas,dp[1][len]);
}
return 0;
}
求一个字符串数组的回文子串的数量
dp[i][j]区间i到j的回文子串数量,dp[i][j]=dp[i+1][j]+dp[i][j-1]-d[i+1][j-1],dp[i+1][j-1]是重复的部分这是a[i]不等于a[j]的情况,若二者相等,在这个基础上还要加上dp[i+1][j-1]+1。