目录

​1.软件版本​

​2.核心代码​

​3.操作步骤与仿真结论​

​4.参考文献​

​5.完整源码获得方式​


1.软件版本

MATLAB2021a

2.核心代码


clear
demo_case = [1,2,3,4];

plot_stuff=1; % 1 if you want to plot the data
% change to 0 if you donot want to plot anything.

if (plot_stuff) close all; end
clc

rand('seed',1)
dimen=2;
X=rand(200,dimen);
point=0.2*ones(1,dimen);

disp('##### Build Tree #####');

tree = kd_buildtree(X,plot_stuff);

for count=1:max(size(demo_case))

switch demo_case(count)

case 1

if (plot_stuff); hold on ; end
if (plot_stuff); plot(point(1),point(2),'g*','MarkerSize',10); end
disp('##### Closest Point Fast #####');
[index_vals,vec_vals,node_number] = kd_closestpointfast(tree,point)
if (plot_stuff); plot(X(index_vals,1),X(index_vals,2),'y*','MarkerSize',10); end

case 2

if (plot_stuff); hold on ; end
if (plot_stuff); plot(point(1),point(2),'go'); end
disp('##### Closest Point Good #####');
[index_vals,vec_vals,node_number] = kd_closestpointgood(tree,point)
if (plot_stuff); plot(X(index_vals,1),X(index_vals,2),'m*','MarkerSize',10); end

case 3
point=0.6*ones(1,dimen);
if (plot_stuff); hold on ; end
if (plot_stuff); plot(point(1),point(2),'g*','MarkerSize',10); end
disp('##### N Closest Points #####');
num_of_points=10;
[index_vals,dist_vals,vec_vals] = kd_knn(tree,point,num_of_points,plot_stuff)
if (plot_stuff);
plot(X(index_vals,1),X(index_vals,2),'g*');
dist=sqrt(sum((point-X(index_vals(end),1:2)).^2));
plot(point(1)+dist*cos(0:0.1:2*pi),point(2)+dist*sin(0:0.1:2*pi),'g-','LineWidth',2)
end


case 4

disp('##### Range Query #####');
point=0.35*ones(1,dimen);
range=[-0.1*ones(1,dimen); 0.1*ones(1,dimen)];
[index_vals,dist_vals,vector_vals] = kd_rangequery(tree,point,range)

%%% plotting stuff
if (plot_stuff);
a=point+range(1,:);
b=point+range(2,:);
c=[a(1) a(1) b(1) b(1);a(1) b(1) b(1) a(1)];
d=[a(2) b(2) b(2) a(2);b(2) b(2) a(2) a(2)];
plot(point(1),point(2),'k*','MarkerSize',10)
line(c,d, 'color', 'k','LineWidth',2);
plot(X(index_vals,1),X(index_vals,2),'k*')
end

end

end

if (plot_stuff);
set(gca,'box','on');
set(gca,'XTickLabel',[]);
set(gca,'YTickLabel',[]);
end

3.操作步骤与仿真结论

【kd树故障检测】基于KDtree的电路故障检测算法的MATLAB仿真_机器视觉

4.参考文献

[1]李坤. 基于机器视觉的船体缺陷检测技术研究[D]. 大连理工大学, 2020.

D230