Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
原创
©著作权归作者所有:来自51CTO博客作者Digital2Slave的原创作品,请联系作者获取转载授权,否则将追究法律责任
1. 环境信息
Ubuntu 18.04 LTS
python3.6
tensorflow-gpu 1.15.0
cuda 10.2
cudnn 7.6.3
keras 2.3.1
(wtf) ➜ efficientnet_wtf nvidia-smi
Thu Oct 24 11:47:43 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.26 Driver Version: 430.26 CUDA Version: 10.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 2070 Off | 00000000:01:00.0 On | N/A |
| N/A 37C P8 4W / N/A | 225MiB / 7979MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
2. 解决方案
from keras import backend as K
if 'tensorflow' == K.backend():
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = "0"
set_session(tf.Session(config=config))
3. 参考
Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, so try looking to see if a warning log message was printed above.