#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
int main( int argc, char** argv )
{
Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;
//加载三幅不同场景的图像
if( argc < 4 )
{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -1;
}
src_base = imread( argv[1], 1 );
src_test1 = imread( argv[2], 1 );
src_test2 = imread( argv[3], 1 );
//把输入图像转换为HSV格式
cvtColor( src_base, hsv_base, CV_BGR2HSV );
cvtColor( src_test1, hsv_test1, CV_BGR2HSV );
cvtColor( src_test2, hsv_test2, CV_BGR2HSV );
hsv_half_down = hsv_base( Range( hsv_base.rows/2, hsv_base.rows - 1 ), Range( 0, hsv_base.cols - 1 ) );
//用50个箱子表示色度,60个箱子表示饱和度
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };
// hue varies from 0 to 256, saturation from 0 to 180
float s_ranges[] = { 0, 256 };
float h_ranges[] = { 0, 180 };
const float* ranges[] = { h_ranges, s_ranges };
// Use the o-th and 1-st channels
int channels[] = { 0, 1 };
//用MatND存储直方图
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;
//计算HSV图像直方图并归一化
calcHist( &hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false );
normalize( hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false );
normalize( hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false );
normalize( hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat() );
calcHist( &hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false );
normalize( hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat() );
//应用直方图比较算法
for( int i = 0; i < 4; i++ )
{ int compare_method = i;
double base_base = compareHist( hist_base, hist_base, compare_method );
double base_half = compareHist( hist_base, hist_half_down, compare_method );
double base_test1 = compareHist( hist_base, hist_test1, compare_method );
double base_test2 = compareHist( hist_base, hist_test2, compare_method );
printf( " Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2 );
}
printf( "Done \n" );
return 0;
}
opencv-直方图比较
原创
©著作权归作者所有:来自51CTO博客作者Digital2Slave的原创作品,请联系作者获取转载授权,否则将追究法律责任
上一篇:HEVC-Tool list
下一篇:HEVC-配置文件解读

提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
浅析MySQL 8.0直方图原理
本文将对直方图概念进行介绍,借助举例描述直方图的使用方式,对创建/删除直方图的原理进行浅析,并通过例子说明其应用场景。
直方图 mysql 执行计划 查询优化 -
Python OpenCV #2 - OpenCV中的GUI功能
本文介绍了OpenCV的基本方发,包括图像读取、显示和写入。
python ide OpenCV -
opencv-直方图均衡化
图像进行直方图均衡化可以增强图像的对比度效果!!!#include "opencv2/highgui/highgui.hpp"#include "opencv2/im
openCV #include 彩色图像 直方图均衡化 -
opencv-模板匹配
#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#incldow =
openCV #include scala 归一化 -
opencv-特征检测
运用opencv函数SurfFeatureDetector和detect来检测感兴趣点;运用opencv函数drawKe
OpenCV 函数 #include 2d scala -
opencv-视频输出
#include // for standard I/O#include // for strings#include // Basic Open
openCV ide #include ios -
opencv-图像轮廓
本文主要使用opencv自带findContours函数和drawContours函数实现图像的轮
openCV #include scala ios