One integer number x is called "Mountain Number" if:

(1) x>0 and x is an integer;

(2) Assume x=a[0]a[1]...a[len-2]a[len-1](0≤a[i]≤9, a[0] is positive). Any a[2i+1] is larger or equal to a[2i] and a[2i+2](if exists).

For example, 111, 132, 893, 7 are "Mountain Number" while 123, 10, 76889 are not "Mountain Number".

Now you are given L and R, how many "Mountain Number" can be found between L and R (inclusive) ?

Input

The first line of the input contains an integer T (T≤100), indicating the number of test cases.

Then T cases, for any case, only two integers L and R (1≤L≤R≤1,000,000,000).

Output

For each test case, output the number of "Mountain Number" between L and R in a single line.

Sample Input

3

1 10

1 100

1 1000

Sample Output

9

54

384



题目大概:

找出像山一样的数的个数,即偶数位比奇数位大的数,找出范围内这种数的个数。

思路:

基础数位dp,一要注意前导零,二要分好类,讨论位数的大小。

代码:


#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
long long a[22];
long long dp[22][25][2];


long long dpp(int pos,int qian,int jo,int lead,int limit)
{
if(pos==-1)return 1;
if(!limit&&dp[pos][qian][jo]!=-1)return dp[pos][qian][jo];
long long sun=0;
int end=limit?a[pos]:9;
for(int i=0;i<=end;i++)
{
if(!(lead||i))
sun+=dpp(pos-1,9,0,0,limit&&i==a[pos]);
else if(jo&&i>=qian)
sun+=dpp(pos-1,i,!jo,1,limit&&i==a[pos]);
else if(!jo&&i<=qian)
sun+=dpp(pos-1,i,!jo,1,limit&&i==a[pos]);

}
if(!limit)dp[pos][qian][jo]=sun;
return sun;
}

long long go(long long x)
{
int pos=0;
while(x)
{
a[pos++]=x%10;
x/=10;
}

return dpp(pos-1,9,0,0,1);
}

int main()
{
long long n,m,t;
memset(dp,-1,sizeof(dp));
scanf("%I64d",&t);
while(t--)
{ scanf("%I64d%I64d",&n,&m);
printf("%I64d\n",go(m)-go(n-1));
}

return 0;
}