Problem Description


While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N,M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps toF (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, <i>F</i>. <i>F</i> farm descriptions follow. <br>Line 1 of each farm: Three space-separated integers respectively: <i>N</i>, <i>M</i>, and <i>W</i> <br>Lines 2..<i>M</i>+1 of each farm: Three space-separated numbers (<i>S</i>, <i>E</i>, <i>T</i>) that describe, respectively: a bidirectional path between <i>S</i> and <i>E</i> that requires <i>T</i> seconds to traverse. Two fields might be connected by more than one path. <br>Lines <i>M</i>+2..<i>M</i>+<i>W</i>+1 of each farm: Three space-separated numbers (<i>S</i>, <i>E</i>, <i>T</i>) that describe, respectively: A one way path from <i>S</i> to <i>E</i> that also moves the traveler back <i>T</i> seconds.


Output


Lines 1..<i>F</i>: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input


2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8


Sample Output


NO
YES


题目大概:

几个农场之间,有双向通道(正权值),有单向通道(负权值),找出其中是否有负权回路。

思路:

用弗洛伊德算法。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int n,m,h;
int dis[6000];
int s=0;
struct point
{
int l,r,shu;
}a[6000];
int fin()
{
dis[1]=0;
for(int i=1;i<n-1;i++)
{
for(int j=1;j<=s;j++)
{
if(dis[a[j].r]>dis[a[j].l]+a[j].shu)
dis[a[j].r]=dis[a[j].l]+a[j].shu;
}
}
for(int j=1;j<=s;j++)
if(dis[a[j].r]>dis[a[j].l]+a[j].shu)return 0;

return 1;


}


int main()
{
int t;
cin>>t;
for(int i=1;i<=t;i++)
{ memset(dis,10003,sizeof(dis));
memset(a,0,sizeof(a));
s=0;
cin>>n>>m>>h;

for(int j=1;j<=m;j++)
{int z1,z2,z3;
cin>>z1>>z2>>z3;
a[++s].l=z1;
a[s].r=z2;
a[s].shu=z3;
a[++s].l=z2;
a[s].r=z1;
a[s].shu=z3;

}
for(int j=1;j<=h;j++)
{int z1,z2,z3;
cin>>z1>>z2>>z3;
a[++s].l=z1;
a[s].r=z2;
a[s].shu=-z3;
}


int pp=fin();
if(pp==1)cout<<"NO"<<endl;
else cout<<"YES"<<endl;



}

return 0;
}