1、程序的装入和链接
1)地址的概念
2)程序装入中的地址处理
绝对装入(逻辑地址=物理地址)
静态重定位装入
动态运行时重定位装入
3)不同的程序链接装入方式(使用内存的时机)
静态链接
装入时链接
运行时链接
3)不同的程序链接方式
装入是使用内存的开始,但链接的不同会使内存的使用有差别:
根据链接时间的不同,分成三种:
静态链接:装入运行前将多个目标模块及所需库函数链接成一个整体,以后不再拆开。
装入时动态链接:装入内存时,边装入边链接的链接方式。
运行时动态链接:对某些目标模块的链接,在执行中需要该目标模块时,才对它进行链接。
① 静态链接:
装入运行前,生成可执行文件时进行的。
将多个目标模块及所需库函数链接成一个整体,以后不再拆开。
② 装入时动态链接
由一个目标模块开始装入,若又涉及外部模块调用事件,装入程序再找出相应的外部目标模块,并将它装入内存,还要修改目标模块中的相对地址。
比静态链接好在哪里?
(1) 静态链接好的程序,修改部分模块后,需重新链接成可装入程序。动态方式则便于修改和更新。
(2) 便于实现共享。静态的N个程序都需要一个模块时,需要进行N次拷贝。
③ 运行时动态链接:
装入时动态链接的问题
许多情况下,事先不知道某应用程序本次运行需要哪些模块,只能全部装入,装入时全部链接在一起,效率低。
办法:有的模块不经常使用就暂时不装入,运行时用到了再装入。(如程序总不出错,就不会用到错误处理模块。)即运行时动态链接:运行时,将对某些模块的链接推迟到执行时才链接装入。
优点:程序运行装入的内容少了,加快了装入过程,而且节省大量的内存空间。
2、连续分配方式
(1)单一连续分配
系统区:仅提供给OS使用,通常放在内存低址部分
用户区:除系统区以外的全部内存空间,提供给用户使用。
最简单的一种存储管理方式,只能用于单用户、单任务的操作系统中。
优点:易于管理。
缺点:对要求内存空间少的程序,造成内存浪费;程序全部装入,很少使用的程序部分也占用内存。
(2)固定分区分配
把内存分为一些大小相等或不等的分区(partition),每个应用进程占用一个分区。操作系统占用其中一个分区。
提高:支持多个程序并发执行,适用于多道程序系统和分时系统。最早的多道程序存储管理方式。
划分为几个分区,便只允许几道作业并发
1)如何划分分区大小:
分区大小相等:只适合于多个相同程序的并发执行(处理多个类型相同的对象)。缺乏灵活性。
分区大小不等:多个小分区、适量的中等分区、少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。
2)需要的数据结构
建立一记录相关信息的分区表(或分区链表),表项有:
| 起始位置 | 大小 | 状态 |
分区表中,表项值随着内存的分配和释放而动态改变
3)程序分配内存的过程:
也可将分区表分为两个表格:空闲分区表/占用分区表。从而减小每个表格长度。
检索算法:空闲分区表可能按不同分配算法采用不同方式对表项排序(将分区按大小排队或按分区地址高低排序)。
过程:检索空闲分区表;找出一个满足要求且尚未分配的分区,分配给请求程序;若未找到大小足够的分区,则拒绝为该用户程序分配内存。
(3)动态分区分配
分区的大小不固定:在装入程序时根据进程实际需要,动态分配内存空间,即——需要多少划分多少。
空闲分区表项:从1项到n项:
内存会从初始的一个大分区不断被划分、回收从而形成内存中的多个分区。
1)数据结构
空闲分区表:
记录每个空闲分区的情况。
每个空闲分区对应一个表目,包括分区序号、分区始址及分区的大小等数据项。
空闲分区链:
每个分区的起始部分,设置用于控制分区分配的信息,及用于链接各分区的前向指针;
分区尾部则设置一后向指针,在分区末尾重复设置状态位和分区大小表目方便检索。
2)分区分配算法
动态分区方式,分区多、大小差异各不相同,此时把一个新作业装入内存,更需选择一个合适的分配算法,从空闲分区表/链中选出一合适分区
首次适应算法FF
循环首次适应算法
最佳适应算法
最差适应算法
快速适应算法
3)分区分配操作
分配内存
找到满足需要的合适分区,划出进程需要的空间
if s<=size,将整个分区分配给请求者
if s> size,按请求的大小划出一块内存空间分配出去,余下部分留在空闲链中,将分配区首址返回给调用者。
回收内存
进程运行完毕释放内存时,系统根据回收区首址a,在空闲分区链(表)中找到相应插入点,根据情况修改空闲分区信息,可能会进行空闲分区的合并:
回收分区
(1)回收区(首址a)与一个分区f1末尾(首址b+大小)邻接:将回收区与f1合并,修改f1的表项的分区大小
(2)回收区(首址a+大小)与一个分区f2的首址b邻接:将回收区与f2合并,修改f2的表项的首址、分区大小
(3) (1)(2)两种情况都有,则将回收区与前后两个分区F1、F2邻接:将三个分区合并,使用F1的表项和F1的首址,取消F2的表项,大小为三者之和
(4) 回收区没有邻接的分区:为回收区单独建立新表项,填写回收区的首址与大小,根据其首址插到空闲链中的适当位置
3. 基本分页存储管理方式
1)页面的概念
存划分成多个小单元,每个单元K大小,称(物理)块。作业也按K单位大小划分成片,称为页面。
2)页表的概念
为了找到被离散分配到内存中的作业,记录每个作业各页映射到哪个物理块,形成的页面映射表,简称页表。
每个作业有自己的页表
页表的作用:
页号到物理块号的地址映射
要找到作业A
关键是找到页表(PCB)
根据页表找物理块
3)地址的处理
连续方式下,每条指令用基地址+偏移量即可找到其物理存放的地址。
规律
作业相对地址在分页下不同位置的数有一定的意义结构:
页号+页内地址(即页内偏移)
关键的计算是:根据系统页面大小找到不同意义二进制位的分界线。
从地址中分析出页号后,地址映射只需要把页号改为对应物理块号,偏移不变,即可找到内存中实际位置。
4)地址变换机构
前面讲解了地址变换的原理,那么谁具体实现地址映射?——地址变换机构。
围绕页表进行工作,那么页表数据放在哪?
寄存器。一个进程有n个页,页表就需要记录n项数据,需要n个寄存器。不现实。
内存。只设置一个页表寄存器PTR(page table register)记录页表在内存中的首地址和页表长度,运行时快速定位页表。
5)引入快表——针对访问速度问题
问题:基本分页机制下,一次指令需两次内存访问,处理机速度降低1/2,分页空间效率的提高以如此的速度为代价,得不偿失。
改进:减少第1步访问内存的时间。增设一个具有“并行查询”能力的高速缓冲寄存器,称为“快表”,也称“联想寄存器”(Associative memory),IBM系统称为TLB(Translation Look aside Buffer)。
6)两级、多级页表,反置页表——针对大页表占用内存问题
页表大小的讨论
进程分页离散存放,但页表的数据是连续在存放内存的。而页表可能很大:
①两级页表
将页表分页,并离散地将页表的各个页面分别存放在不同的物理块中
为离散分配的页表再建立一张页表,称为“外层页表”,其每个表项记录了页表页面所在的物理块号。
②多级页表
64位操作系统下,两级仍然不足以解决页表过大问题时,可按同样道理继续分页下去形成多级页表。
4.基本分段存储管理方式
从提高内存利用率角度;
固定分区 <动态分区<分页
从满足并方便用户(程序员)和使用上的要求角度:
分段存储管理:作业分成若干段,各段可离散放入内存,段内仍连续存放。
1)分段系统的基本原理
段的特点
每段有自己的名字(一般用段号做名),都从0编址,可分别编写和编译。装入内存时,每段赋予各段一个段号。
每段占据一块连续的内存。(即有离散的分段,又有连续的内存使用)
各段大小不等。
分段下的相对地址:
地址结构:段号 + 段内地址
段表:记录每段实际存放的物理地址
2)段表与地址变换机构
段是连续存放在内存中。段表中针对每个“段编号”记录:“内存首地址”和“段长”
3)分页和分段的主要区别
需求:分页是出于系统管理的需要,是一种信息的物理划分单位,分段是出于用户应用的需要,是一种逻辑单位,通常包含一组意义相对完整的信息。
一条指令或一个操作数可能会跨越两个页的分界处,而不会跨越两个段的分界处。
大小:页大小是系统固定的,而段大小则通常不固定。分段没有内碎片,但连续存放段产生外碎片,可以通过内存紧缩来消除。相对而言分页空间利用率高。
逻辑地址:
分页是一维的,各个模块在链接时必须组织成同一个地址空间;
分段是二维的,各个模块在链接时可以每个段组织成一个地址空间。
其他:通常段比页大,因而段表比页表短,可以缩短查找时间,提高访问速度。分段模式下,还可针对不同类型采取不同的保护;按段为单位来进行共享
4)信息共享
分段系统的突出优点:
易于实现共享
在分段系统中,实现共享十分容易,只需在每个进程的段表中为共享程序设置一个段表项。
比较课本图。对同样的共享内容的管理上,很明显分段的空间管理更简单。分页的图涉及太多的页面划分和地址记录的管理。
易于实现保护:
代码的保护和其逻辑意义有关,分页的机械式划分不容易实现。